

Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms

Marcus Fontoura

Eli Cortez, Anand Bonde, Alexandre Muzio, Thomas Moscibroda, Gabriel Magalhaes, Mark Russinovich, Ricardo Bianchini

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central

Evaluation

Demo

Taxonomy

Conclusions

Machine learning everywhere

ML-based services: ML techniques:

Image recognition in Facebook Moments Regression

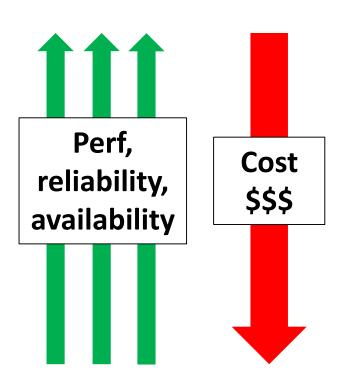
Video analysis in YouTube captions Classification

We can leverage ML techniques to optimize the cloud platforms that run these services

Correlation analysis in movie recommendations Reinforcement learning

•••

Public cloud platforms



Lower Costs Via Resource Management

Pack VMs tightly

Oversubscribe resources

Increase server density

Reduce energy consumption

Reduce management overhead

Scavenge idle resources

Practical challenges:
Complexity and scale
VM performance impact
VM availability impact

Lower Costs Via Resource Management

Pack VMs tightly

Oversubscribe resources

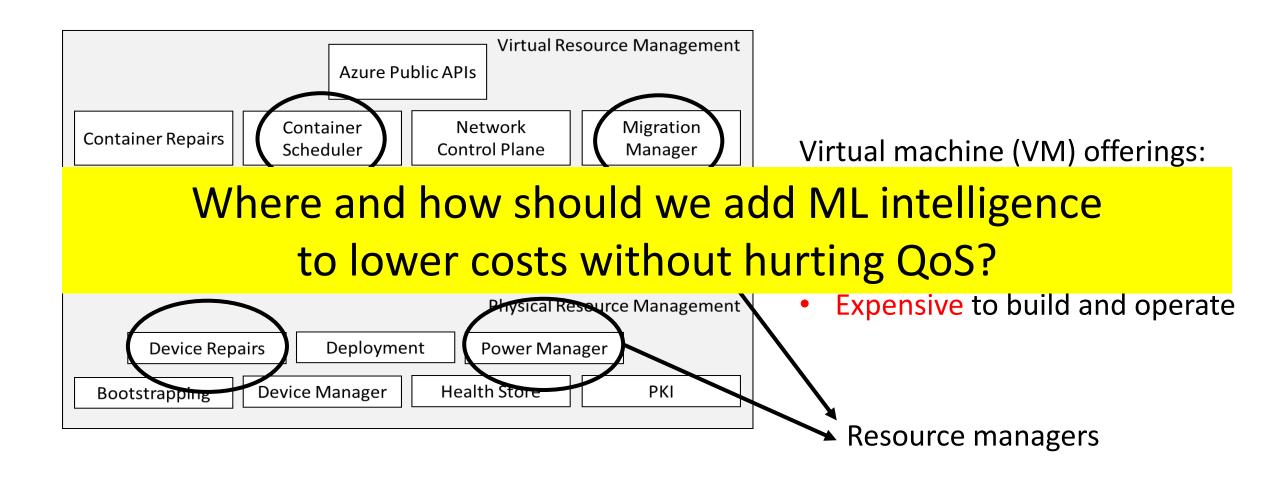
Practical challenges:

We can address these challenges by deeply <u>understanding</u> and <u>predicting</u> the characteristics of the VM workload!

Reduce management overhead

Scavenge idle resources

Overview of the Azure Compute platform



Where? Many managers can benefit

Container scheduler

Pack tightly [ASPLOS'13]

Oversubscribe [Later, SOSP'17]

Scavenge [OSDI'16]

Power manager

Cap power

Save energy [Google]

Migration manager

Defragment servers

Free up misbehaving servers

Practical challenges:

Complexity and scale

No info about apps

Performance impact

Availability impact

ML can help!

We need a general framework

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central

Evaluation

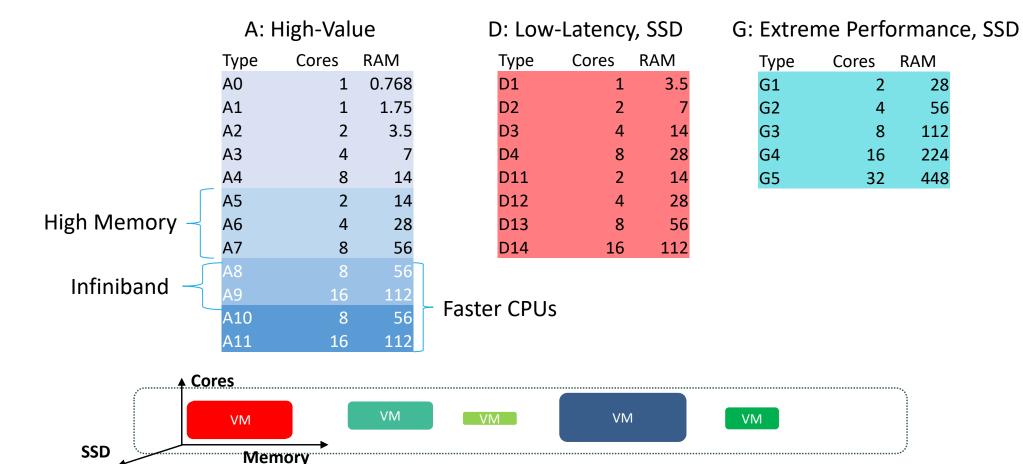
Demo

Taxonomy

Conclusions

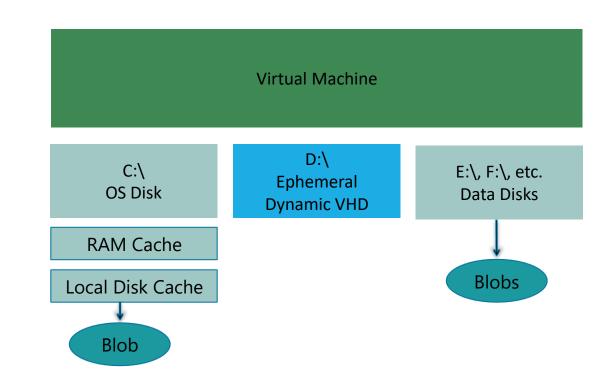
Virtual Machine Types

Azure has several VM families, for instance:



Virtual Machine Architecture

- Network, local and remote storage are additional allocation dimensions
- Ephemeral storage: uses local storage bandwidth and space
 - Backed by local HDD or SSD
- Persistent storage: uses network bandwidth
 - Cached on local server RAM, HDD or SSD
 - Backed by Azure Storage page blobs
 - "S" variants (e.g. "DS14") can use SSDbacked Premium Storage



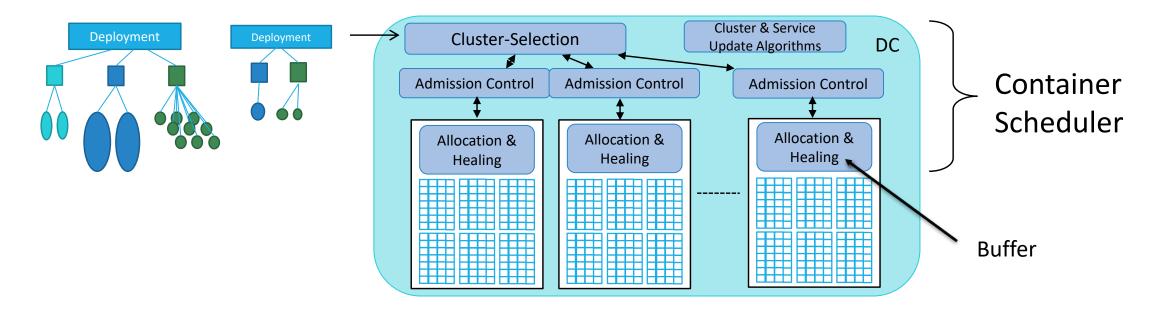
Fabric Clusters

- Fabric Controller: Hardware and VM manager for a "cluster" of servers
 - Uses 5-server Paxos-type replication for high availability
 - Exposes API for deploying, deleting and updating VMs
 - Keeps track of server and VM health
- Fabric Controller can autonomously "heal" a VM
 - Detects server has failed and restarts VM on a healthy server



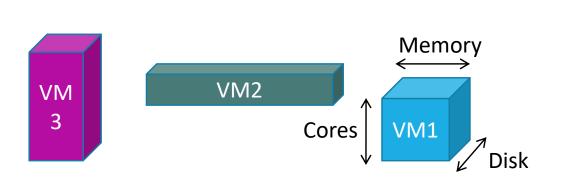
Container Scheduler

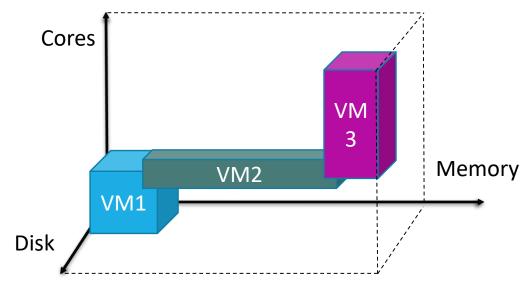
- Composed of cluster-selection, admission-control, and intra-cluster allocation algorithms
- Multi-level:
 - First, select FC cluster
 - Then, FC cluster allocator places VMs on servers



Constraints

- Placement constraints
 - Resource constraints: Sum of resources of all VMs on a node cannot exceed server resources (CPU, memory, disk, SSD, network IO,...)
 - → Bin-Packing
 - Failure domain constraint: VMs of the same tenant must be spread across many failure domains
 - Co-location constraints: Certain types of VMs cannot be co-located together

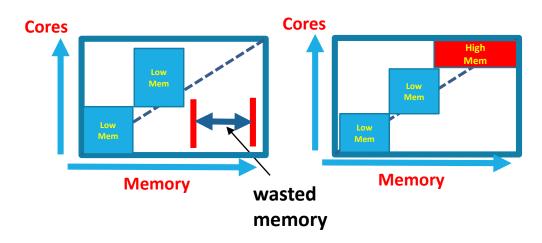




Resource Utilization

VM Packing should achieve high utilization across all resource dimensions
 Multi-dimensional resource packing

Container scheduler should be aware of Multiple Resource Dimensions:

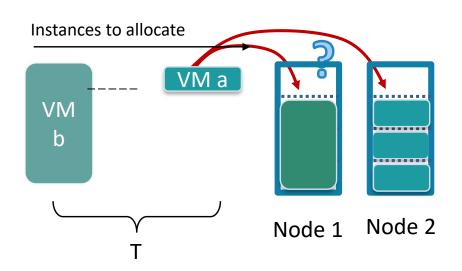


- We use multi-dimensional best-fit.
 [Heuristics for Vector Bin Packing,
 Panigrahy et al., MSR Tech Report 2011]
- Each resource dimension d is assigned a weight $w_d \rightarrow$ scarcity of the resource.
- r_d is the residual resource of a node
- Allocate the VM to the node that minimizes $\sum_d w_d * r_d$

Multi-Dimension Optimization

- Container scheduling should achieve high utilization across all resource dimensions
 - Multi-dimensional resource packing
 - 2. Take into account online nature of service allocation

Container scheduler should be aware of online nature of allocation



- <u>Simple example</u>: Assume every VM has probability of ½ of leaving until time T.
- Probability that we can deploy VM_b?
 - If new VM is placed on Node 1:

$$\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 = \frac{6}{16}$$

• If new VM is placed on Node 2:

$$\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^4 = \frac{9}{16}$$

→ Placing new VM on Node 2 is better!

Resource utilization in Azure

Each 1% of utilization gain results in millions of \$
 savings

Container scheduling algorithms are crucial for operating Azure effectively!

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central

Evaluation

Demo

Taxonomy

Conclusions

Background: Main Azure characteristics

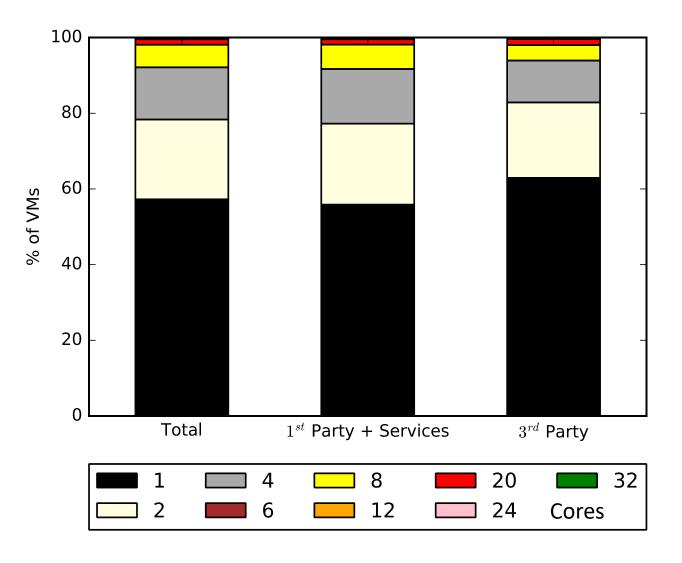
Azure hosts:

- 1st-party VMs Microsoft dev, test, internal services
- 1st-party services offered to 3rd-party customers Office 365, Xbox, Skype, ...
- 3rd-party VMs External users' VMs, Daimler, Geico, Adobe, ...

Customers create "subscriptions", deploy VMs to regions in "deployments"

Our study: Full VM workload of Azure over 3 months (trace available!)

Characterization – VM size (CPU cores)



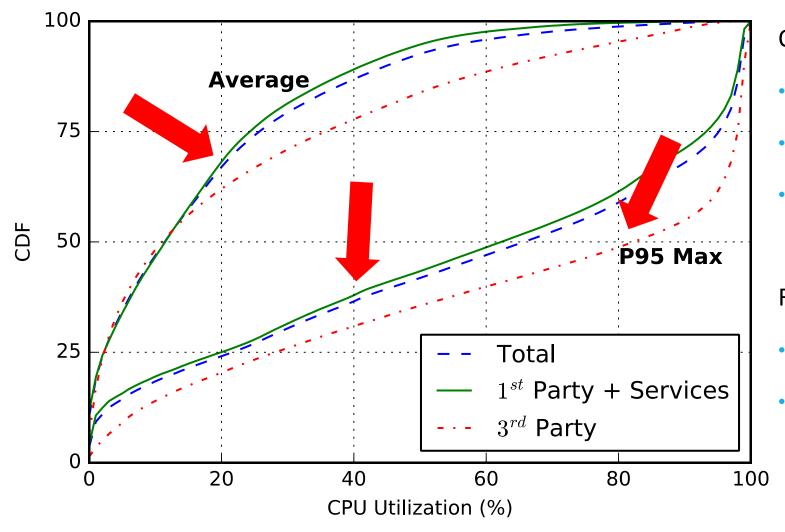
Observations:

- Small VMs with scale-out pattern
- CPU cores and memory are correlated
- 1st- and 3rd-party are similar

Resource management:

Easier to fill holes

Characterization – VM CPU utilization



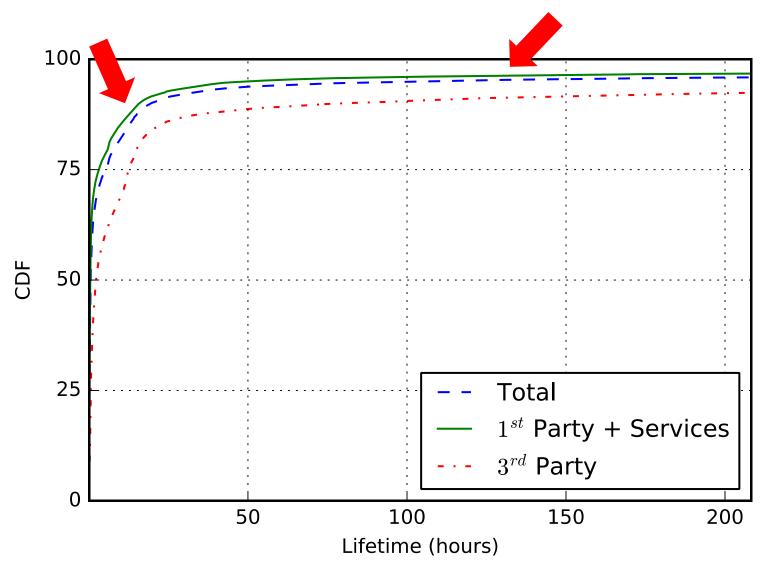
Observations:

- Large % with low avg. utilization
- Large % with high P95 util., esp. 3rd party
- Large % with low utilization even at P95

Resource management:

- High utils
 may limit packing
- Low utils → oversubscription is possible

Characterization – VM lifetime



Observations:

- Short VMs dominate, esp. for 1st-party
- Non-trivial percentage of long VMs
- Long VMs = 95% of core hours!

Resource management:

- If VM lasts 1 day, it will live much longer
- Non-urgent maintenance
- Lifetime-aware VM scheduling

Other VM workload characteristics

VM type (laaS vs PaaS)

VM memory size

VM deployment size

VM arrivals

VM workload class (interactive vs delay-insensitive)

Correlations between characteristics

Please refer to our paper for details

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central

Evaluation

Demo

Taxonomy

Conclusions

Resource Central

ML and prediction-serving system for improving resource management

Potential RC clients: Platform resource managers

VM scheduling

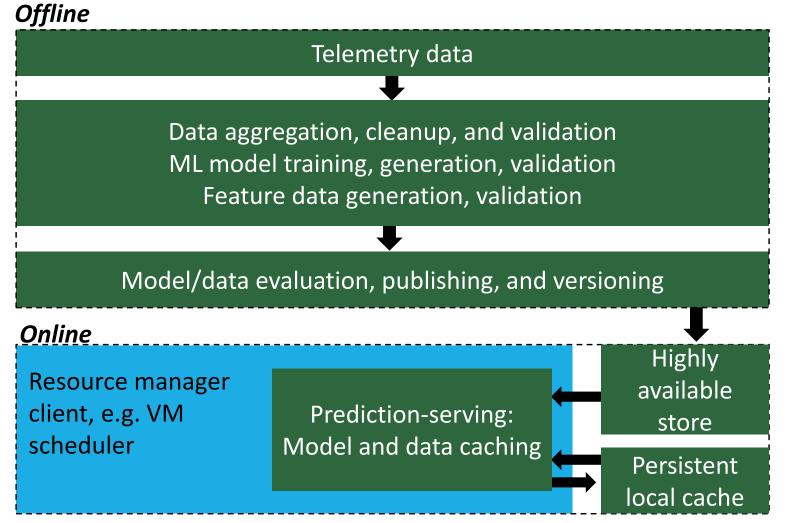
Cluster selection

Power oversubscription

Server maintenance

VM rightsizing recommendation

Resource Central architecture



Design principles:

- Off critical perf & availability paths
- Simple; based on stable systems
- General; easy to use by clients

Status:

- Manually used by engineers
- Clients in production

Current ML models

Metrics	Modeling approaches	
CPU utilization	Random Forests	
Deployment size	Extreme Gradient Boosting Trees	
Lifetime	Extreme Gradient Boosting Trees	
Workload class	FFT, Extreme Gradient Boosting Tree	

Classification algorithms

- Numeric models predict "buckets"
- Prediction comes with a "confidence score"

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central

Evaluation

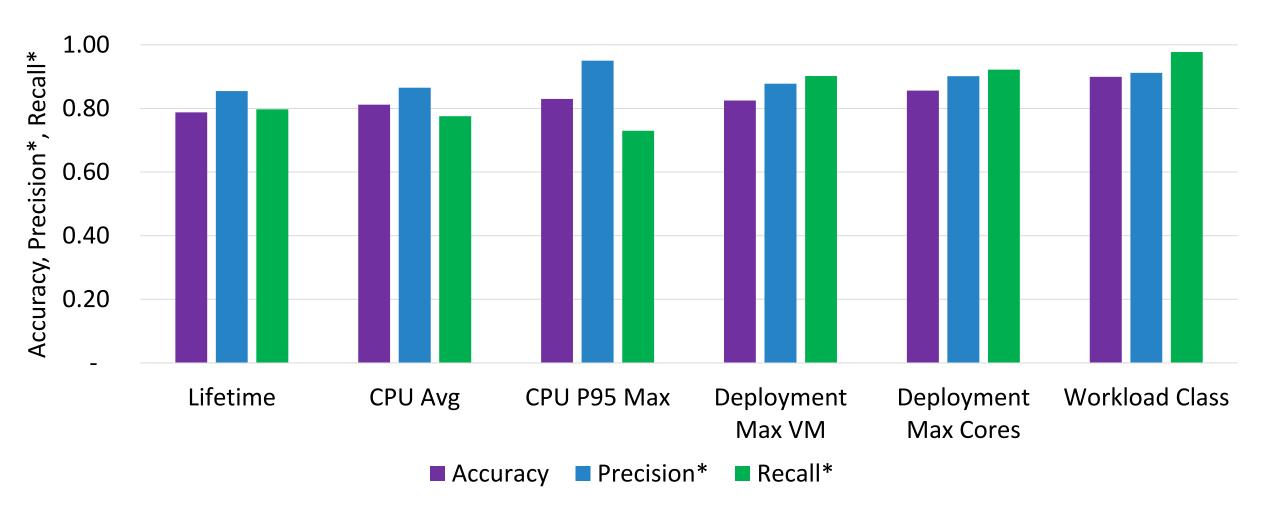
Demo

Taxonomy

Conclusions

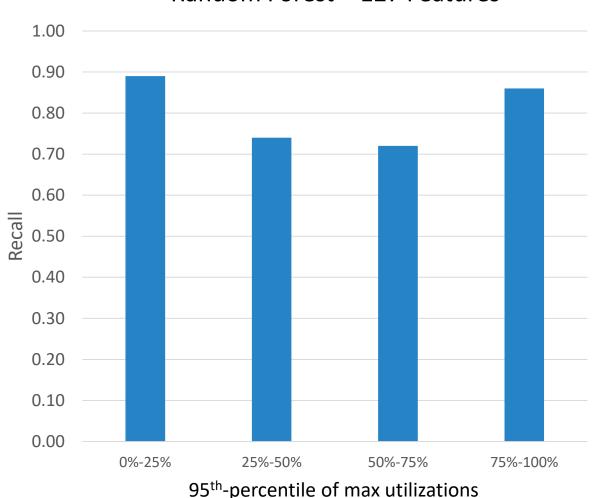
Prediction quality

Accuracy $\geq 79\%$ $Precision^{\theta} \geq 85\%$ $Recall^{\theta} \geq 73\%$



Prediction - VM CPU P95 max

Random Forest – 127 Features



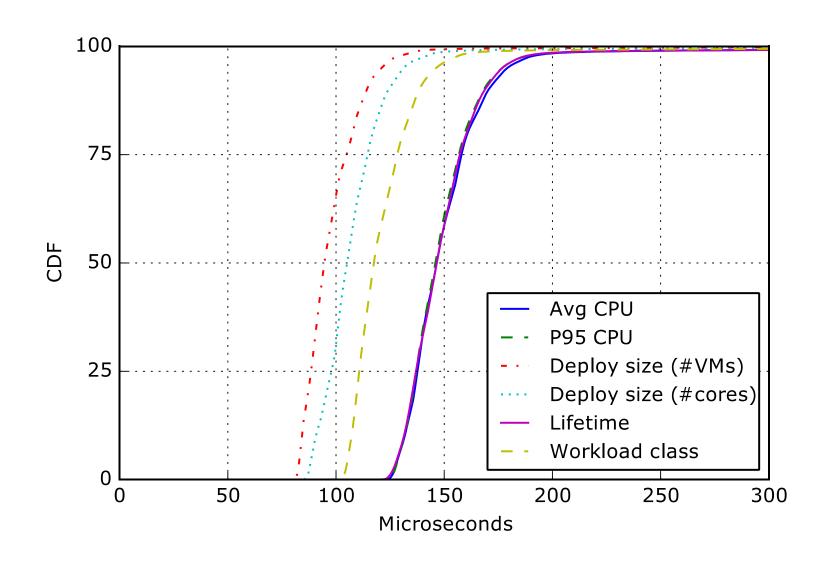
- Overall accuracy = 0.83
- $Precision^{\theta} = 0.94$
- $Recall^{\theta} = 0.73$

Important attributes:

- % previous VMs in bucket (subscription)
- Operating system

Deployment time is irrelevant

Performance – Model Execution



- Low latency
- Predictable
- 99th percentile: 258 μsec max

Deep Learning in RC

Azure Batch Al K Keras **Deep Learning Azure Workload** Models Information Cognitive Telemetry, weights inputs Metadata activation function net input activation transfer function threshold

Deep Learning in RC

Task: VM Lifetime Prediction

Inputs: Neural net

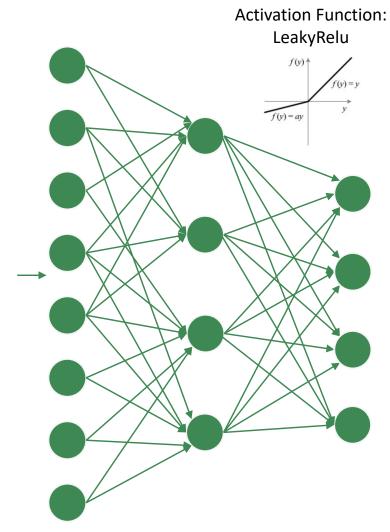
Output (classification):

(~500 features)

VM Lifetime (in 4 buckets)

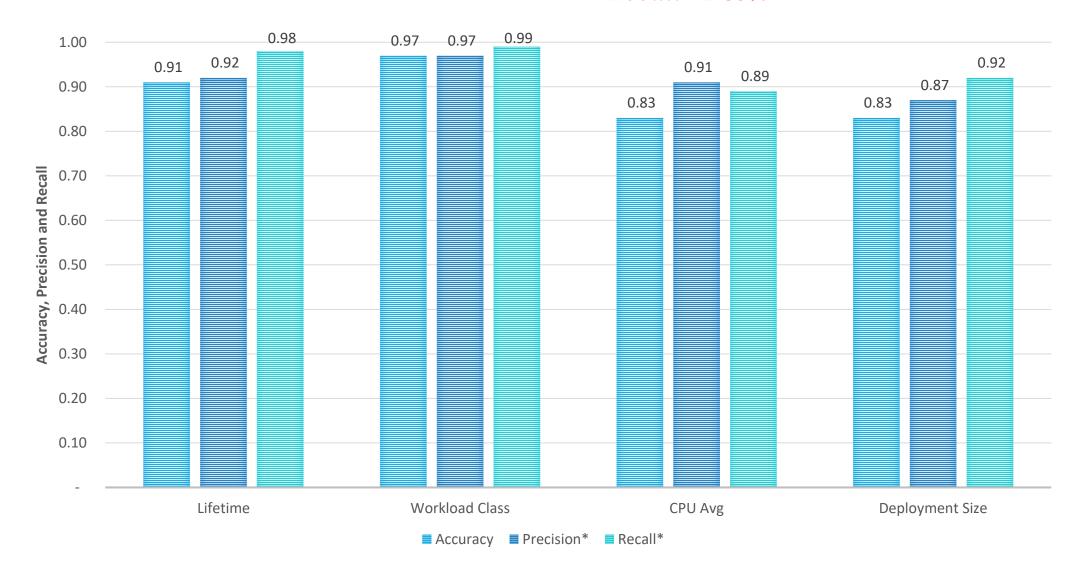
- VP Count
- Memory
- OS
- VM Type
- Subscription (...)

Features

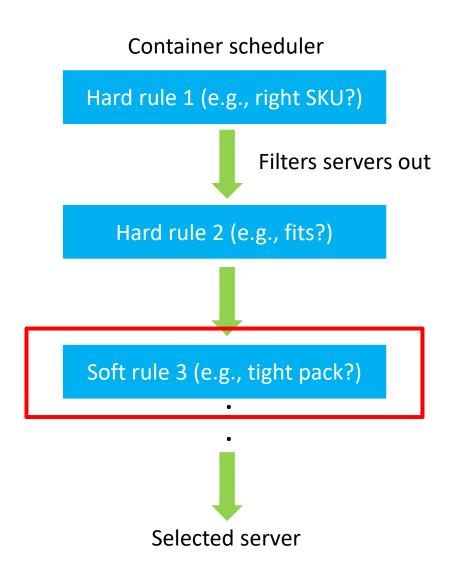


Prediction Quality

Accuracy $\geq 83\%$ $Precision^{\theta} \geq 87\%$ $Recall^{\theta} \geq 89\%$



Case study: Smart CPU oversubscription



Goals:

- Be conservative! Stick with P95, 1st-party loads
- Don't oversubscribe servers running prod VMs
- Oversubscribe other servers up to a percentage over capacity and a max predicted (P95) utilization

New rule checking the sum of the P95 utilizations

Mispredictions: only issue is consistent under-prediction

RC-informed CPU oversubscription

Simulation results

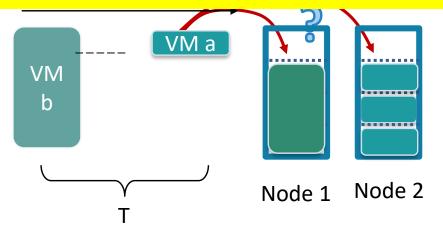
Version	Description	Behavior		
Baseline	No oversubscription	Low capacity; many VM allocation failures		
Naive	25% oversub without predictions	No failures; 6x resource exhaustion		
RC-informed	25% oversub with RC predictions	No failures; rare exhaustion		
RC-right	25% oversub with oracle predictions	No failures; same exhaustion		

Multi-Dimension Optimization

- Container scheduling should achieve high utilization across all resource dimensions
 - 1. Multi-dimensional resource packing
 - 2. Take into account online nature of service allocation

Simple example: Assume every VM has

Lifetime prediction is important for container scheduling



$$\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 = \frac{6}{16}$$

If new VM is placed on Node 2:

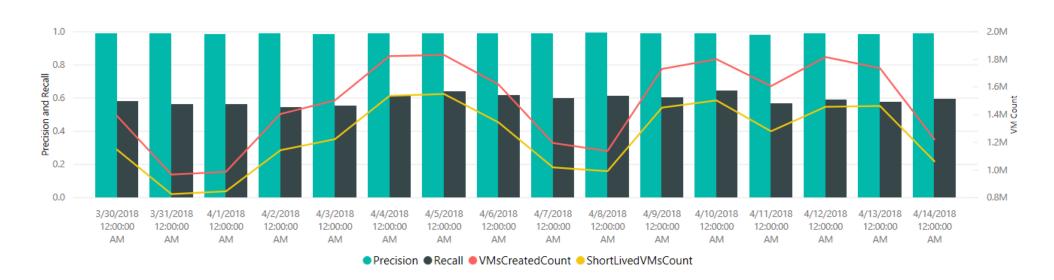
$$\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^4 = \frac{9}{16}$$

→ Placing new VM on Node 2 is better!

Production Dashboard

Resource Central - Short Lived VM Prediction Quality in Production

Date	VMsCreatedCount	${\sf ShortLivedVMsCount}$	Short Lived Resource Central Predicted Count	Short Lived And Predicted Count	Precision	Recall
4/3/2018 12:00:00 AM	1503947	1222903	688535	680188	0.99	0.56
4/4/2018 12:00:00 AM	1823851	1536073	948810	941223	0.99	0.61
4/5/2018 12:00:00 AM	1832033	1549938	1002854	994740	0.99	0.64
4/6/2018 12:00:00 AM	1618960	1344647	838380	828991	0.99	0.62
4/7/2018 12:00:00 AM	1195448	1018937	616786	609763	0.99	0.60
4/8/2018 12:00:00 AM	1137267	991428	611711	607731	0.99	0.61
4/9/2018 12:00:00 AM	1730869	1451170	887340	880931	0.99	0.61
4/10/2018 12:00:00 AM	1801473	1503357	982545	972590	0.99	0.65
4/11/2018 12:00:00 AM	1606677	1280204	740178	728069	0.98	0.57
4/12/2018 12:00:00 AM	1817186	1457029	868355	860817	0.99	0.59
4/13/2018 12:00:00 AM	1736058	1463295	856922	845368	0.99	0.58
4/14/2018 12:00:00 AM	1221487	1062817	641981	634921	0.99	0.60



Demo

Outline

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central

Evaluation

Demo

Taxonomy

Conclusions

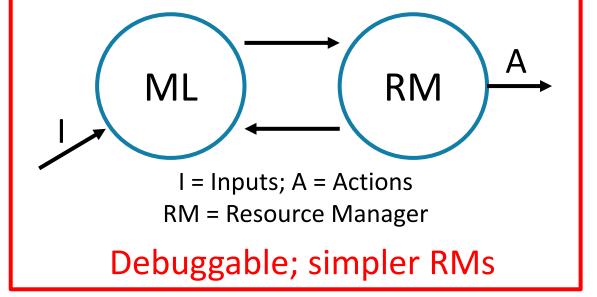
Approaches to adding ML

Passive, external to managers:

Predict load intensity, utilization

Cluster workloads, resources

ML as an insight provider

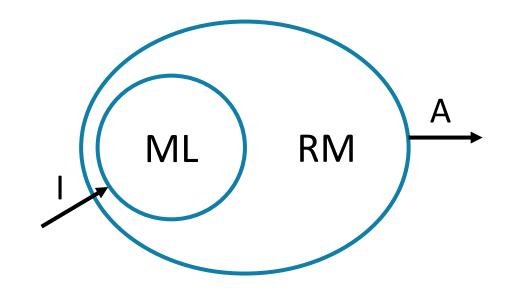


Active, built into managers:

Adjust parameters of policies

Select actions to be performed

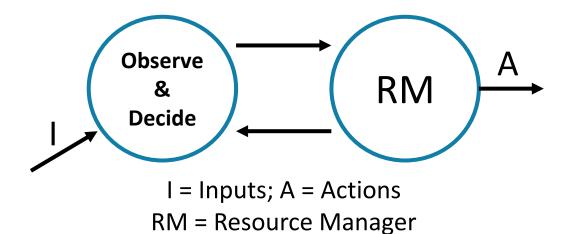
ML has deep knowledge of policies



Along a different dimension

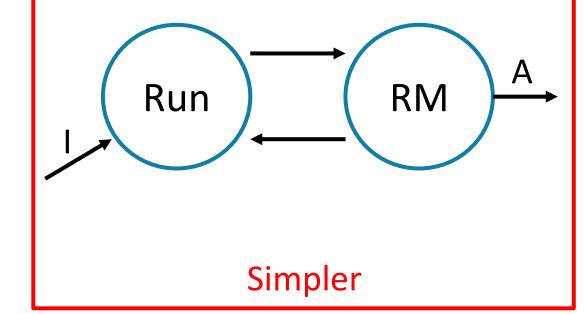
Iterative observe and decide:

After each action, observe & decide Management as a control problem



Delayed observation:

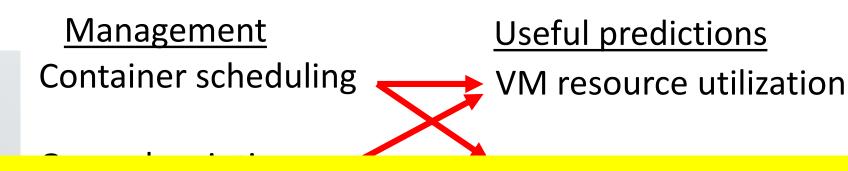
Generate model offline, run it online Re-generate model periodically



Summary of our approach

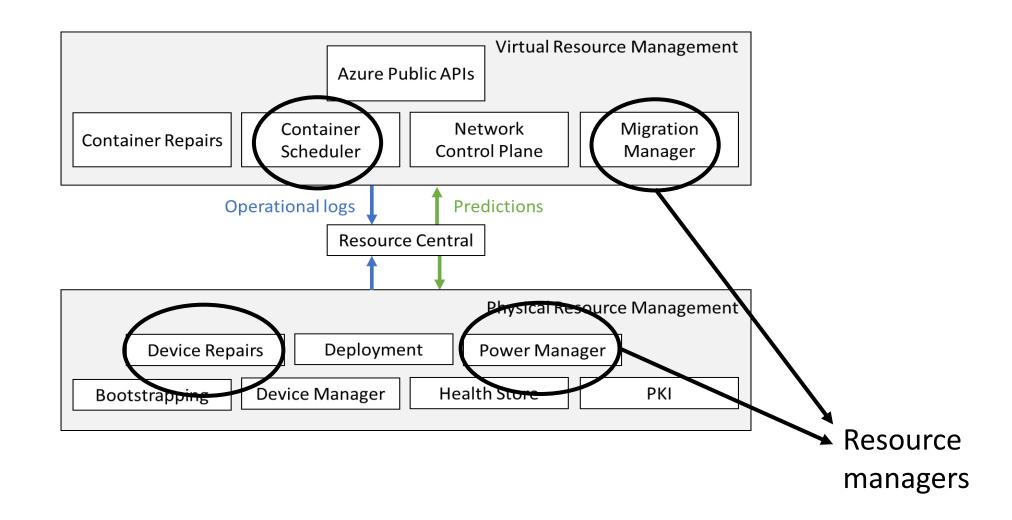
0

A general, passive and delayed-observation framework for all ML tasks



We are building Resource Central and modifying resource managers to use its predictions in Azure Compute

RC at the center of Azure Compute



Conclusions

ML can improve resource management in cloud platforms

Understanding cloud workload is key for identifying improvements

Resource Central produces high quality workload predictions

Passive and delayed-observation framework is simpler. Scale is the problem!

Predictions enable lower costs while retaining good QoS

Thanks

Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms

VM Traces -- https://github.com/Azure/AzurePublicDataset/

Marcus Fontoura

Eli Cortez, Anand Bonde, Alexandre Muzio, Thomas Moscibroda, Gabriel Magalhaes, Mark Russinovich, Ricardo Bianchini