
!ȊǳǊŜΩǎ ±a !ƭƭƻŎŀǘƻǊ LƴǘŜǊƴŀƭǎ

Marcus Fontoura
Microsoft

Thomas Moscibroda, Yang Chen, et al.

Microsoft Research

Mark Russinovich, Jim Johnson, Nar Ganapathy,
Ashwin Kulkarni, et al.

Azure

Motivation

ÅWhat is Azure

ÅA bit of history

ÅWhere we are going

Â100+ datacenters
ÂTop 3 networks in the world

Operational

Announced/Not Operational

Central US
Iowa

West US
California

North Europe
Ireland

East US
Virginia

East US 2
Virginia

US Gov
Virginia

North Central US
Illinois

US Gov
Iowa

South Central US
Texas

Brazil South
Sao Paulo

West Europe
Netherlands

China North *
Beijing

China South *
Shanghai

Japan East
Saitama

Japan West
Osaka

India South
Chennai

East Asia
Hong Kong

SE Asia
Singapore

Australia South East
Victoria

Australia East
New South Wales* Operated by 21Vianet

India Central
Pune

Canada East
Quebec City

Canada Central
Toronto

India West
Mumbai

Azure Global Footprint

>1 Trillion
Messages delivered every
month with Event Hubs

~100,000
New Azure customer
subscriptions/month

20Million
SQL database hours

used every day

>7Trillion
Storage transactions

every month

60Billion
Hits to Websites run on
Azure Web App Service

425Million
Azure Active

Directory Users

57%
Of Fortune 500 Companies use

Microsoft Azure

>60Trillion
Storage objects

in Azure

Azure Scale

Resource utilization in Azure

ÅEach 1% of utilization gain results in millions of $ savings

Resource utilization in Azure

ÅEach 1% of utilization gain results in millions of $ savings

VM allocation algorithms are crucial for operating Azure
effectively!

AZURE INTERNALS

Virtual Machine Types

ÅAzure currently has three VM families:

Type Cores RAM
A0 1 0.768
A1 1 1.75
A2 2 3.5
A3 4 7

A4 8 14
A5 2 14

A6 4 28
A7 8 56
A8 8 56

A9 16 112
A10 8 56

A11 16 112

Type Cores RAM
D1 1 3.5
D2 2 7
D3 4 14
D4 8 28

D11 2 14
D12 4 28

D13 8 56
D14 16 112

Type Cores RAM
G1 2 28

G2 4 56
G3 8 112
G4 16 224

G5 32 448

A: High-Value D: Low-Latency, SSD G: Extreme Performance, SSD

Infiniband

VMVM VM VMVMVM

Cores

MemorySSD

Faster CPUs

High Memory

Virtual Machine Architecture

Å Network, local and remote storage are
additional allocation dimensions

Å Ephemeral storage: uses local storage
bandwidth and space

ïBacked by local HDD or SSD

Å Persistent storage: uses network
bandwidth

ïCached on local server RAM, HDD or SSD

ïBacked by Azure Storage page blobs

ïά{έ ǾŀǊƛŀƴǘǎ όŜΦƎΦ ά5{мпέύ Ŏŀƴ ǳǎŜ {{5-
backed Premium Storage

Virtual Machine

C:\
OS Disk

E:\ , F:\ , etc.
Data Disks

D:\
Ephemeral

Dynamic VHD

RAM Cache

Local Disk Cache Blobs

Blob

Availability Domains - FDs and UDs

ÅFault domain: largest scope single-point of failure in a datacenter
ïSPoFs: server, TOR, PDU => rack

ÅUpdate domain: group of servers that can be updated in parallel
ïPeriodic host software (e.g. hypervisor and OS) require reboots

ïSome VMs may not wish to be rebooted concurrently

CLOS Network

TOR TOR TOR TOR TOR

Servers

RacksFault Domain

Availability Set - FD and UD Constraints

ÅAvailability Sets group collections of VMs with related availability constraints
ïUp to 3 FDs, up to 20 UDs M

ïMore FDs available for infrastructure

ÅExamples:
ï3 VMs performing Paxosreplication: 3 FDs

ï10 VMs serving web requests: 90% availability goal

Availability Set 2
FDs: 2
UDs: 5

UD2

UD 1

UD4

UD3

UD3

UD0

UD0 UD1

UD2

UD 4

FD0 FD1

Availability Set 1
FDs: 3
UDs: 3

FD1FD0 FD2

UD0 UD1 UD2

Fabric Clusters

ÅCŀōǊƛŎ /ƻƴǘǊƻƭƭŜǊΥ IŀǊŘǿŀǊŜ ŀƴŘ ±a ƳŀƴŀƎŜǊ ŦƻǊ ŀ άŎƭǳǎǘŜǊέ ƻŦ ǎŜǊǾŜǊǎ
ïUses 5-server Paxos-type replication for high availability
ïExposes API for deploying, deleting and updating VMs
ïKeeps track of server and VM health

ÅCŀōǊƛŎ /ƻƴǘǊƻƭƭŜǊ Ŏŀƴ ŀǳǘƻƴƻƳƻǳǎƭȅ άƘŜŀƭέ ŀ ±a
ïDetects server has failed and restarts VM on a healthy server

FC1 FC2 FCn

VM Allocator
ÅComposed of cluster-selection, admission-control, and intra-cluster allocation

algorithms

ÅMulti-level:
ïFirst, select FC cluster

ïThen, FC cluster allocator places VMs on servers

Availability Set DCCluster-Selection

Admission Control Admission Control Admission Control

Allocation &
Healing

Allocation &
Healing

Allocation &
Healing

Cluster & Service
Update Algorithms

Availability Set

Azure
Allocation
Engine

Buffer

ALLOCATION BASICS

Allocation Scenarios

ÅNewly deployed services, service evictions, pre-ŜƳǇǘƛƻƴǎΣ Χ

ÅScale-out of existing services

ÅService healing after failures

ÅOptimizing for host OS updates

A: UD 0 A: UD 1

B: UD 0 B: UD 1

A: UD 0 A: UD 1

B: UD 0 B: UD 1

Constraints

ÅPlacement constraints
ïResource constraints: Sum of resources of all VMs on a node cannot exceed server resources

ό/t¦Σ ƳŜƳƻǊȅΣ ŘƛǎƪΣ {{5Σ ƴŜǘǿƻǊƪ LhΣΧύ
Ą Bin-Packing

ïFailure domain constraint: VMs of the same tenant must be spread across many failure domains

ïCo-location constraints: Certain types of VMs cannot be co-located together

Cores

Memory

Disk

VM1

VM2VM
3 Cores

Disk

Memory

VM1
VM2

VM
3

Buffers

ÅUnit of allocation is a cluster
ï If a node or rack fails, VMs must be healed to empty capacity within the cluster.

ï If a service wants to scale-out, extra VMs are placed within the cluster

ĄWe keep sufficient empty-resource buffers in each cluster (healing, scale-outs, turn-space).

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

0.1 0.2 0.3 0.4 0.5

F
a

ilu
re

 R
a
te

C
o

re
 U

til
iz

a
tio

n

ScaleOutPercentage

Gen3-Threshold(50, 25)-Heavy

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

0.1 0.2 0.3 0.4 0.5

F
a

ilu
re

 R
a
te

C
o

re
 U

til
iz

a
tio

n
ScaleOutPercentage

Gen3-Threshold(70, 35)-Heavy

AverageCoreUtilization

InstanceScaleOutFailureRate

InstanceHealingFailureRate

Scale-out threshold
(#empty nodes)

Healing threshold
(#empty nodes)

Simplified View of Cluster Buffers

TOR TOR TOR TOR

Χ

Rack

Cluster

Χ

Node

Cluster

Scale-out/Growth Buffer

Healing Buffer

New Deployment
Threshold

Scale-Out Threshold

for new services

for scale-outs

for healing

Simplified View of Cluster Buffers

When new deployment threshold
is reached, no new deployments
into this cluster.

When scale-out threshold is
reached, existing tenants
cannot grow anymore.
Scale-Out Failures occur!

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

When healing buffer is
exhausted, node/rack failures
cannot be healed.
Healing Failures occur!

Fragmentation

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Fragmentation

ÅThe actual utilization in a cluster is lower than New Deployment Threshold

ÅFragmentation Ą spatial fragmentation + temporal fragmentation (church)

ÅAmount of fragmentation depends on workload, cluster generation, policy
settings, features, etc.

Setting the Thresholds / Limits

Scale-out/Growth Buffer = 5 Nodes

Healing Buffer = 5 Nodes

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer = 15 Nodes

Healing Buffer = 20 Nodes

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer = 50 Nodes

Healing Buffer = 20 Nodes

New Deployment Threshold

Scale-Out Threshold

Buffers Too Small Buffers Too LargeBuffers Balanced

0.42%

0.06% 0.04%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

Too Small Balanced Too Large

Scale-Out Failure Rate

2.12%

0.01% 0.00%
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Too Small Balanced Too Large

Healing Failure Rate

91.53%

87.29%

83.95%

80%

82%

84%

86%

88%

90%

92%

94%

Too Small Balanced Too Large

Utilization

Utilization vs. Empty Nodes

Utilization: ~ 66%
Empty nodes: 0

Utilization: ~ 66%
Empty nodes: 1

Cannot heal 1/3 possible single-node failures

Cannot host one more full-size instance

Can host one more any possible instances

Can heal all possible one-node failures

Utilization vs. Empty Nodes

Utilization: ~ 66%
Empty nodes: 0

Utilization: ~ 66%
Empty nodes: 1

Cannot heal 1/3 possible single-node failures

Cannot host one more full-size instance

Can host one more any possible instances

Can heal all possible one-node failures

Utilization numbers are not well correlated to whether
we can heal or scale-out in a cluster.

[ƛƳƛǘǎ ǎƘƻǳƭŘ ōŜ ŜȄǇǊŜǎǎŜŘ ŀǎ άІŜƳǇǘȅ ƴƻŘŜǎέ
in a cluster ςnot utilization.

Optimizing

ÅThe more tightly we can pack VMs,

Χ ǘƘŜ ƭŜǎǎ ōǳŦŦŜǊ ǿŜ ƴŜŜŘΦ

Χ ǘƘŜ ƭŜǎǎ ŦǊŀƎƳŜƴǘŀǘƛƻƴ ǿŜ ƘŀǾŜΦ

Χ ǘƘŜ ŜŀǎƛŜǊ ŦƻǊ ƘŜŀƭƛƴƎ ϧ ǎŎŀƭŜ-outs.

ÅAllocation decision is in critical path of deployment. We want relatively simple
and very fast algorithms

ÅAlgorithms must take decision based on little knowledge
ïAlgorithms are online Ą need to take decision for each VM immediately

ïWe do not know how long each VM will remain deployed before it leaves

ÅWe want to avoid VM migrations as much as possible

ÅAlgorithms should be adaptiveto adjust to changes in workloads, hardware,
policies, constraints, platform characteristics, etc.

High utilization Ą Lower COGS
Each 1% of utilization gain results
in millions of $ savings.

Resource Utilization

ÅVM Packing should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

wasted
memory

Cores

Memory

Low
Mem

Low
Mem

Cores

Memory

Low
Mem

High
Mem

Low
Mem

VM Allocator should be aware of
Multiple Resource Dimensions:

ÅWe use multi-dimensional best-fit .
[Heuristics for Vector Bin Packing,
Panigrahyet al., MSR Tech Report 2011]

ÅEach resource dimension d is assigned a
weight ύ Ą scarcity of the resource.

Åὶ is the residual resource of a node
ÅAllocate the VM to the node that

minimizes В ύ ὶz

Multi-Dimension Optimization

ÅVM Packing should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

2. Take into account online nature of service allocation

VM a
VM
b

Instances to allocate

VM Allocator should be aware of
online nature of allocation

ÅSimple example: Assume every VM has
probability of ½ of leaving until time T.

ÅProbability that we can deploy VMb ?
Å If new VM is placed on Node 1:

Å If new VM is placed on Node 2:

Ą Placing new VM on Node 2 is better !
Node 1 Node 2

T

Azure Multi-Dimensional, Adaptive VM Packing

ÅAzure allocation algorithm achieves
higher utilization across all resource dimensions
ïMulti-dimensional resource packing

ïTake into account online nature of service allocation

ÅAchieves near-optimalproperties in terms of
healing & availability

ÅAllocation engine is adaptable
ïEasy to evaluate impact of changes

(new service or VM types, hardware,
policy ŎƻƴŦƛƎǳǊŀǘƛƻƴΣ ŦŜŀǘǳǊŜǎΣ ŜǘŎΧύ

Å!ŘƧǳǎǘǎ ǘƻ ǿƻǊƪƭƻŀŘΣ ƘŀǊŘǿŀǊŜΣ ŜǘŎΧ

Reduces resource waste
by ~40% compared to
simple baseline algorithms

MULTI-PRIORITY ALLOCATION

Multi-Priority Allocation

ÅSo far, we assume all VMs are of equal priority

ÅWhat if we want to run workload of different priorities?

ÅFor example, run low-priority VMs in unused resource slots (fill in
fragmentation) or in safety buffers. Evict these VMs if higher-priority VMs
arrive.

ĄάMulti -priority bin-ǇŀŎƪƛƴƎ ǇǊƻōƭŜƳέ

ÅObjective: Pack as much as possible from highest-priority. Given that, pack
as much as possible from next highest-priority, etcΧ

Multi-Priority Allocation ςMetrics

ÅThree metrics determine allocation decision for a new VM i

1. Packing-Quality p(i): Same as in single-priority case.
High packing-ǉǳŀƭƛǘȅ ƳŜŀƴǎ ŀ ±a άŦƛǘǎέ ǿŜƭƭΦ

2. Eviction Cost e(i): Cost of evicting lower-priority VMs
when deploying the VM to a node

3. Safety-Score s(i): We should deploy a low-priority VM
ǘƻ ŀ ƴƻŘŜ ƻƴ ǿƘƛŎƘ ǘƘŜ ±a ƛǎ ƭƛƪŜƭȅ ƎƻƛƴƎ ǘƻ άǎǳǊǾƛǾŜέ ŦƻǊ
a long time. Safety-ǎŎƻǊŜ ƛǎ ƘƛƎƘ ƛŦ ǘƘŜ ŜȄǇŜŎǘŜŘ άǎǳǊǾƛǾŀƭ-ǘƛƳŜέ
is high Ą less impact on future high-priority VM allocation.

VM i

Good p(i) Bad p(i)

VM i

Good e(i) Bad e(i)

VM i

Good s(i) Bad s(i)

Next time a high-priority VM is allocated,
it will likely be placed on Node 2

High Priority

Low Priority

Multi-Priority Allocation ςTrade-Offs

ÅThe three metrics are often at odds with each other. Which node to place the new VM?

High Priority

Low Priority

new instance:

Packing-quality vs. eviction-cost trade-off

If we minimize eviction cost,
packing quality decreases.

0.8087

0.7643 0.7640

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

SinglePriority TwoPriority ThreePriority

CPU Utilization of Highest Priority
Workload with baseline algorithm

Utilization loss due to
suboptimal packing when
always minimizing evictions

Multi-Priority Allocation ςTrade-Offs

ÅThe three metrics are often at odds with each other. Which node to place the new VM?

High Priority

Low Priority

new instance:

Packing-ǉǳŀƭƛǘȅ ǾǎΦ άǎǳǊǾƛǾŀƭ-ǘƛƳŜέ ǘǊŀŘŜ-off

Packing score is optimized for
Nodes 1 or 2.

Survival-time is best in Node 3.

Computing the Safety Score

1. Compute arrival rate of each VM type

2. For each node v, and each VM type t:

Compute safety-distance(v,t).
Ą Expected time until some VM will be evicted due to

subsequent VM of type t, if new VM is deployed on node v.

danger-probability(v,t) = 1 / safety-distance(v,t).

3. For each node v:

danger-probability(v) = ʅt (danger-probability(v,t))

Safety-score(v) = 1/danger-probability(v)

The approx. probability
that some VM will be
evicted within the next
time interval, if the new
VM is placed on Node v.

We use statistical
information of workloads
(Data-driven)

We use a clever algorithm
that can compute these
values very quickly.

Computing the Safety Score

Example 1:Algorithm is effective at capturing true safety of different nodes:

ÅAssume two VM types Large and Small (Arrival intervals: Large=3, Small=1)

Computing the Safety Score

Example 2:Algorithm is effective at automatically adjusting to cluster state:

ÅSame example as before, except we add two additional empty nodes

Safest node
has changed!

The existence of additional
empty nodes has made
this node much more safe!

Computing the Safety Score

Example 3:Algorithm is aware of existing low-priority VMs:

ÅSame example as before, except one empty node now contains a low-priority VM

Safest node
has changed!

The existence of low-priority VM
in this node has made the
empty nodes less safe!
{ƳŀƭƭŜǊ άŜƳǇǘȅ-ƴƻŘŜ ōǳŦŦŜǊέ

Adaptivityof Safety Scores

ÅSafety scores automatically adapts to changes in Azure clusters
(due to workload changes, policy changes, hardware changes, etcΧύ

X-axis: All possible node-states, ordered
according to #cores used in this state.

Low-utilization cluster.
Many empty nodes

High-utilization cluster.
Few empty nodes

Balancing the Metrics

ÅExample:Balancing Packing-Awareness and Eviction Cost

1. Order nodes according to
packing scores

2. Pick top X% of nodes
3. From among these, pick nodes

with least eviction cost

Choice of parameter X is based
on workload and hardware characteristics.
(data-driven)

H
ig

h-
p

ri
o

ri
ty

u
ti
liz

a
tio

n
L

o
w
-p

ri
o

ri
ty

u
ti
liz

a
tio

n Higher X

Putting it all together

ÅHighly-efficient, state-of-art Multi -Priority Resource Allocation in Azure

ÅFor each allocation and eviction, we have to balance

ïCost of evicted instances Ą Eviction-Cost

ïPacking Quality Ą Packing Score

ïSurvival time of newly deployed instances Ą Safety-Score

ÅAlgorithm is priority-rule based.

ÅOur algorithm generalizes to k priorities.

Basic Multi-Dimensional
Best-Fit Packing

Eviction Cost-Awareness Eviction Cost-Awareness

Packing Awareness Eviction Cost-Awareness

Packing Awareness

Safety Awareness

We are not aware of any
similar multi-priority
allocation work in academia

Basic Multi-Dimensional
Best-Fit Packing

Basic Multi-Dimensional
Best-Fit Packing

Basic Multi-Dimensional
Best-Fit Packing

Multi-Priority ςAllocation Engine

ÅMulti-priority allocation algorithm significantly improves low-
priority utilization, without decreasing high-priority utilization.

0.7669 0.7615 0.7669 0.7661 0.7669

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

BF+BF LP-Aware+BF BF+HP-Aware LP-Aware+HP-Aware Oracle

HP Utilization

0.0029

0.1212
0.1070

0.1609
0.1731

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

BF+BF LP-Aware+BF BF+HP-Aware LP-Aware+HP-Aware Oracle

LP Utilization

Baseline algorithm. Our algorithm.
Optimal algorithm
if we knew the
future.

