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ABSTRACT
Holistic twig join algorithms represent the state of the art for

evaluating path expressions in XML queries. Using inverted in-

dexes on XML elements, holistic twig joins move a set of index

cursors in a coordinated way to quickly find structural matches.

Because each cursor move can trigger I/O, the performance of

a holistic twig join is largely determined by how many cursor

moves it makes, yet, surprisingly, existing join algorithms have

not been optimized along these lines. In this paper, we describe

TwigOptimal, a new holistic twig join algorithm with optimal cur-

sor movement. We sketch the proof of TwigOptimal’s optimality,

and describe how TwigOptimal can use information in the return

clause of XQuery to boost its performance. Finally, experimen-

tal results are presented, showing TwigOptimal’s superiority over

existing holistic twig join algorithms.

Categories and Subject Descriptors: H.3[Information
Systems]: Information Storage and Retrieval; E.1[Data]:
Data Structures

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: XML, Twig Joins, Indexing, Evaluation

1. INTRODUCTION
Both XPath and XQuery allow users to specify value and

structural constraints in XML queries using path expres-
sions. A path expression can be represented as a query tree,
which is structurally matched against XML data. Perform-
ing this structural matching as efficiently as possible is one
of the key issues in building an XML query engine.
There are two common approaches to perform structural

matching efficiently. One approach is to use a structural
join [1, 5, 19], where a query tree is decomposed into a set
of binary ancestor-descendant or parent-child relationships.
The relationships are then evaluated using a binary merge
join. Another approach is to use a holistic twig join [3, 10],
which processes a query tree with a single n-ary join.
Holistic twig joins represent the state of the art for eval-
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uating path expressions in XML queries. Not only do they
perform better [10], but they are self-tuning and do not re-
quire a query optimizer. Holistic twig joins are index-based,
typically relying on an inverted index for positional informa-
tion about XML elements. Cursors are used to access the
inverted index and moved in a coordinated way to efficiently
find structural matches.
Several variations on holistic twig joins have been pro-

posed in the literature [3, 4, 9, 10, 16, 18]. Because each
cursor move in an inverted index can trigger I/O, the per-
formance of a twig join1 is largely determined by how many
cursor moves it makes. Despite this observation, existing
twig join algorithms have not been optimized along these
lines. There has been more focus on minimizing the mem-
ory requirements of intermediate results than on minimizing
the number of cursors moves. The problem with existing
twig join algorithms is that they make a local, and hence
sub-optimal, decision in choosing which cursor to move next
and how far to move it.
In this paper, we describe TwigOptimal, a new holistic

twig join algorithm with optimal cursor movement. This is
accomplished by looking more globally at the query’s state
to determine which cursor to move next. We provide a
sketch of TwigOptimal’s optimality, and present experimen-
tal results, showing its superiority over existing twig join
algorithms.
Another shortcoming of existing twig join algorithms is

that they assume all nodes in a query tree need to be out-
put. However, an XQuery return clause often requires only
a subset of the nodes being matched to be output. We refer
to the nodes that need to be output in the return clause as
extraction points. By being aware of extraction points, we
show how TwigOptimal can dramatically reduce the number
of cursor moves it makes. This is accomplished by skipping
over nodes that do not need to be output.
In summary, the main contributions of this paper are:

• A new holistic twig join algorithm called TwigOptimal
that handles and-or branches and outperforms existing
algorithms by optimizing its cursor movement.

• A description of how XQuery extraction points can be
used to further improve TwigOptimal’s performance.

• Experimental results showing TwigOptimal’s superior-
ity over existing holistic twig join algorithms.

1Note that, for readability, we will often use “twig join” as
a shorthand for “holistic twig join”.
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2. RELATED WORK
Structural joins [1, 5, 19] were the first method proposed

for evaluating path expressions. In a structural join, com-
plex path expressions are broken down into a set of ancestor-
descendant or parent-child relationships and then evaluated
using binary merge joins.
Holistic twig joins were first described in [3], which showed

how performance could be improved by considering all nodes
in the query tree holistically. Optimizations to the original
twig join algorithm were later described in [10] and then
extended to handle OR predicates in [9]. Several papers
have also investigated new index types to speed up twig
joins [5, 8, 10, 12, 18]). TwigOptimal provides the same
functionality offered by existing twig joins, including OR
predicates. Although a standard inverted index is assumed
in this paper, TwigOptimal can also be used with many of
the new index types that have been proposed to speed up
twig joins.
Reference [10] is the only other paper that really addresses

the problem of choosing which index cursor to move next in
a holistic twig join. In [10], when the cursor positions do not
form a structural match, a “broken edge” in the query tree
is chosen using various heuristics and then “fixed”. Fix-
ing a broken edge consists of repeatedly moving the two
cursors forming the edge until they structurally match the
query. The problem with this approach is that, once a bro-
ken edge is chosen, only the two cursors forming the edge can
be moved. In contrast, using the concept of virtual cursor
moves, TwigOptimal is able to consider the whole query’s
cursor state every time a cursor needs to be moved.
To evaluate a path expression like /x/y/z, a holistic twig

join will typically open three index cursors, one for each path
step. However, if the position of data nodes are encoded
with a Dewey value [15], the cursors for x and y can be
derived from the cursor for z. In [18], these derived cursors
were called virtual cursors. The choice of names is perhaps
unfortunate, but the virtual cursors described in [18] should
not be confused with the virtual cursor moves described in
this paper. The former describes a derived cursor, whereas
the latter describes a virtual move of a physical cursor.
References [2] and [11] described methods for minimiz-

ing the memory requirements of intermediate results when
processing XQuery fragments over XML streams. Similarly,
[3, 10] described methods for minimizing the memory re-
quirements of intermediate results in twig joins. However,
the performance of a twig join is largely determined by how
many cursor moves it makes. Therefore, the focus in this pa-
per is on minimizing the number of cursor moves in a twig
join rather than on its memory requirements.

3. BACKGROUND
In this section, we establish some background that will be

used in the remainder of the paper.

3.1 Query Trees
As in the previous work on holistic twig joins [3, 10], we

will focus on XPath expressions or XQuery fragments that
can be represented by a single query tree and structurally
matched against XML data in one pass over an index. These
are basically single-document path expressions containing
child (’/’) axis, descendant (’//’) axis, and equality predi-
cates, all of which can be combined using Boolean AND and
OR operators.

article

OR

year keyword

section

title

AND

2005 xml

Figure 1: Example query tree

As an example, consider the following XQuery fragment,
which returns the titles of XML articles in 2005:

for $a in //article[year = "2005" or

keyword = "xml"]

for $s in $a//section

return $s/title;

This query has three XPath expressions, one in each of the
two for clauses, and one in the return clause. Figure 1 shows
the resulting query tree. Each XPath step in Figure 1 is
represented by a path node. There are also AND and OR
branching nodes, which specify that all or at least one of
the subpatterns below the node must be matched, respec-
tively. Finally, dotted lines are used to indicate that a path
node corresponds to an extraction point, i.e., it is returned
by the query. In general a query tree can have more than
one extraction point since the for-let-where block of XQuery
returns tuples of bindings.

3.2 Inverted Indexes
XML data is also commonly represented as a tree, with

nodes corresponding to text values, elements, or attributes,
and edges capturing the nesting of elements. The position
of XML data nodes are used by holistic twig joins to do
structural matching. The position of an XML data node
can be encoded in different ways. One alternative is to use
the well-known BEL encoding, where a node’s begin, end,
level forms its position. Another alternative is the Dewey
encoding [15]. In this paper, we assume BEL encoding, but
the techniques we describe are orthogonal to the choice of
the encoding.
Holistic twig joins have been implemented over several

indexing structures [8, 13, 16]. Here, we assume a standard
inverted index [7]. Inverted indexes have stood the test of
time and are frequently used in information retrieval and
XML systems alike [1, 3, 5]). Briefly, an inverted index
consists of one posting list per distinct token in the dataset,
where a token can be a text value, attribute, or element tag.
A posting list contains one posting for each occurrence of its
token in the dataset and is sorted by position (in our case
using BEL). Stepping through the posting list for a token
T will enumerate the positions of every occurrence of T in
order, by document and then within document. We assume
each posting list is itself indexed, typically with a B-tree, so
that searching for a particular position within a posting list
is efficient.

3.3 Query Evaluation
To find documents that structurally match a query tree

Q, a holistic twig join associates each path node q with the
posting list in the inverted index whose token matches q.
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A cursor is opened for each of these posting lists, and then
moved in a coordinated way to find documents that struc-
turally match Q. Parent-child and ancestor-descendant con-
straints imposed by the query are checked by looking at the
current positions of cursors. The output of a holistic twig
join is a stream of tuples, where each tuple corresponds to a
solution, that is, a set of data nodes that structurally match
the path nodes in Q. In existing twig join algorithms, all
possible solutions are output [3, 10].

4. THE TWIGOPTIMAL ALGORITHM
In this section we describe TwigOptimal. For simplicity

and to make the comparison to existing algorithms clearer,
TwigOptimal is initially described without taking extraction
points into account. Extraction points are addressed in Sec-
tion 7.

4.1 Data Structures
As in existing holistic twig join algorithms [3, 10], the eval-

uation state of TwigOptimal is a triplet <Q, C, S>, where
Q is the query tree being evaluated, C is the set of cursors
for accessing the inverted index, and S is a set of stacks for
constructing solutions. Data nodes that are part of a so-
lution are stacked on S and output when a full solution is
found.
An index cursor Cq and a stack Sq are associated with

each path node q in Q. Cq points to the current posting for
q, while Sq is used to remember the data nodes for q that
are part of a solution. Each stack entry also has a pointer to
an entry in an ancestor stack, which is used by TwigOptimal
to output a solution, much like in [3, 10, 11].
The position of a cursor Cq is accessed via Cq.begin,

Cq.end, and Cq.level, and similarly for a stacked node in Sq.
Parent-child or ancestor-descendant constraints are checked
by looking at BEL values. We say a cursor Cp contains
another cursor Cq iff Cp.begin ≤ Cq.begin and Cp.end ≥
Cq.end. Similarly, we say that a stack Sp contains Cq if
there is some entry in Sp that contains Cq.
For each cursor Cq, the method Cq.forwardTo(pos) moves

Cq forward from its current position to the first position
greater than or equal to pos. This can trigger I/O as Cq
physically seeks to pos. To optimize its cursor movements,
TwigOptimal also uses virtual cursor moves that, unlike phys-
ical cursor moves, do not trigger I/O. Instead, a virtual move
on Cq simply sets Cq.begin without physically moving Cq.
This will be made clearer shortly. Cq.virtual is set to true
whenever Cq is virtually moved and reset to false whenever
Cq is physically moved.
Unlike path nodes, each branching node in Q is not as-

sociated with a posting list in the inverted index. However,
each branching node does have a cursor, which is used to
pass along the position of its parent or a child cursor when
TwigOptimal is deciding which cursor to move next. Con-
sequently, the cursor of a branching node is always virtual.
By maintaining a cursor for each branching node, TwigOp-
timal does not need to distinguish between path nodes and
branching nodes in most cases, which in turn simplifies the
algorithm.

4.2 The Main Loop
ExecuteQuery(), which is shown in Figure 2, forms the

entry point and main loop of TwigOptimal. It initializes
each cursor to their first posting (line 1), then it repeatedly
inspects the path node q corresponding to the min cursor
(line 3), that is, the cursor with the smallest begin value,
until is has found and output all solutions.
To find and output solutions, the cursors are moved until

ExecuteQuery()
1. initialize all cursors and stacks;
2. while (not done) {
3. q = the path node in Q

associated with the min cursor;
4. while (Extension(q) == false) {
5. MoveCursors(q);
6. q = the path node in Q

associated with the min cursor;
7. }
8. OutputAndPush(q);
9. Cq.forwardTo(Cq.begin + 1);
10. }

Figure 2: The main loop

an extension [10] for q is found (lines 4–7). An extension
for q is basically a partial solution rooted at q. When an
extension for q has been found, the cursor positions in the
subtree rooted at q are guaranteed to be a part of a solution.
In addition, the stacks of q’s ancestors contain the position
of data nodes that, when combined with the extension for
q, forms a full solution.
Once an extension has been found, OutputAndPush() is

called (line 8) to output any new stacked solutions and push
Cq onto its stack. As in [10], Cq is only stacked when it is
part of a solution. Finally, Cq is advanced to its next physi-
cal location (line 9) to start the search for another solution.
The main loop terminates when the end of one or more post-
ing lists is reached, allowing the algorithm to conclude that
no more solutions can be found.

4.3 Checking an Extension
Extension(), which is shown in Figure 3, checks whether

the cursor positions in the subtree rooted at q form an ex-
tension. {C} is the set path of cursors in the subtree rooted
at q. For the subtree rooted at q to form an extension, Cq
must be contained by its parent’s stack Sp, all the cursors
in {C} must be real (not virtual), and all the cursors in {C}
must recursively satisfy the containment constraints of Q
(line 3). In the latter case, a cursor with an AND under it
needs to contain all its children cursors, while a cursor with
and OR under it needs to contain at least one of its children
cursors.

Extension(q)
1. p = the parent of q;
2. {C} = the set of descendant

path cursors of Cq in Q;
3. if (Sp contains Cq and

all the cursors in {C} are real and
{C} satisfies Q’s containment constraints) {

4. return true;
5. }
6. else {
7. return false;
8. }

Figure 3: Checking an extension

4.4 Moving the Cursors
TwigOptimal calls MoveCursors(q) in its main loop as it

searches for an extension, where q corresponds to the min
cursor. MoveCursors() basically tries to move the cursors
in the subtree rooted at q to the next extension for q, if
any. To avoid I/O, this is done using virtual cursor moves.
A physical cursor move is made only when further virtual
progress becomes impossible.
MoveCursors() is shown in Figure 4. Two passes over

the subtree rooted at q are made to virtually move the cur-
sors, a bottom-up pass (line 6) and a top-down pass (line
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7). The two passes over the subtree globally discover the
furthest each cursor can be moved forward without missing
an extension for q. This is in contrast to existing twig join
algorithms, where cursors are moved in a localized way, only
looking at the positions of one parent-child pair of cursors
at a time.

MoveCursors(q)
1. p = the parent of q;
2. if (Sp does not contain Cq) {
3. Cq.begin = max(Cq.begin, Cp.begin + 1);
4. Cq.virtual = true;
5. }
6. MoveCursorsBottomUp(q);
7. MoveCursorsTopDown(q);
8. if (q still corresponds to the min cursor) {
9. Cb = the best virtual cursor to physically

move among Cq and its descendents;
10. Cb.forwardTo(Cb.begin);
11. Cb.virtual = false;
12. }

Figure 4: Moving the cursors

MoveCursors() begins by checking whether Cq is con-
tained by its parent stack (line 2). If not, then Cq is virtually
moved to the max of Cq.begin or Cp.begin+1, which is the
most Cq can be moved forward without missing an exten-
sion for q. Next, the cursors are virtually moved bottom-up
and then top-down (lines 6–7), as described earlier. Finally,
a check is made to see whether q still corresponds to the
min cursor (line 8). If so, then further virtual progress is
impossible, at which point a physical cursor move is made
(lines 9–11). Note that, on exit, MoveCursors() may or may
not have actually found an extension for q. This is checked
in the main loop of TwigOptimal.
When MoveCursors() is forced to make a physical cursor

move, it picks the “best” virtual cursor in the subtree rooted
at q to move (line 9). This is essentially the cursor that
is predicted to move the furthest. How to determine the
best cursor to move is beyond the scope of this papers. For
various heuristics see [10].
MoveCursorsBottomUp(), which is shown in Figure 5 re-

cursively performs a bottom-up pass over the subtree under
consideration. The goal of this pass is to try and move each
parent cursor forward so it contains its children cursors. If
q is an AND node (line 4), then Cq must contain the cursor
of its max child in order for there to be an extension. Simi-
larly, if q is an OR node (line 8), then Cq must contain the
cursor of its min child. Finally, if q is a path node with a
child (line 12), then Cq must contain that child’s cursor.

MoveCusorsBottomUp(q)
1. for (each child c of q) {
2. MoveCusorsBottomUp(c);
3. }
4. if (q is an AND node) {
5. m = the child of q with the max cursor;
6. Cq.begin = Cm.begin;
7. }
8. else if (q is an OR node) {
9. m = the child of q with the min cursor;

10. Cq.begin = Cm.begin;
11. }
12. else if (q has a child) {
13. c = the only child of q;
14. if (Cq.end < Cc.begin) {
15. Cq.begin = max(Cq.begin, Cq.end + 1);
16. Cq.virtual = true;
17. }
18. }

Figure 5: The bottom-up pass to move cursors

Recall that each branching node’s cursor is used to pass
along the position of its parent cursor or a child cursor. Here,
in the case of an AND node, Cq is used to pass up the begin
value of its max child cursor (lines 5–6). Similar action is
taken in the case of an OR node with its min child cursor
(lines 9–10). Finally, if q is a path node with a child, and
Cq.end falls before that child’s cursor, then Cq is virtually
moved to the max of Cq.begin or Cq.end+ 1 (lines 15–16),
which is the most Cq can be moved forward without missing
an extension. The max is needed (line 15) to deal with
the case where a previous call to MoveCursors has already
virtually moved Cq.begin past Cq.end.
After MoveCursorsBottomUp() finishes, each cursor will

have been virtually moved as far forward as its children cur-
sors will allow it to be moved without missing an exten-
sion. MoveCursorsTopDown(), which is shown in Figure 6,
is then called to recursively perform the top-down pass over
the subtree under consideration. The goal of this pass is to
try and move each child cursor forward so it is contained by
its parent cursor.

MoveCusorsTopDown(q)
1. for (each c in children of q) {
2. if (c is an AND or an OR node) {
3. Cc.begin = Cq.begin;
4. }
5. else if (Cc.begin < Cq.begin and

Cc is not contained by Sq) {
6. Cc.begin = Cq.begin + 1;
7. Cc.virtual = true;
8. }
9. MoveCursorsTopDown(c);
10. }

Figure 6: The top-down pass to move cursors

In MoveCursorsTopDown(), c and q correspond to the
current child and parent nodes being examined, respectively.
If c is a branching node, then the child cursor Cc is used to
pass down the position of the parent cursor Cq (line 3).
Else, if Cc.begin falls before Cq and is not contained by its
parent stack Sq, then Cc is virtually moved to Cq.begin+1
(lines 5–8), which is the most Cc can be moved forward
without missing an extension. Sq needs to be checked for
containment in this case to guard against missing solutions
when there is recursive data for q.

4.5 Outputting a Solution
Solutions are output and pushed onto the stacks in Out-

putAndPush(), which is shown in Figure 7. Before the cursor
of node q is stacked (line 8), a check is made to see if q cor-
responds to the root of Q. If so, then one or more solutions
are output before the new root cursor is stacked (lines 2–6).

OutputAndPush(q)
1. if (q == Q.root) {
2 while (Sq.top() is not an ancestor of Cq) {
3. output solutions with Sq.top();
4. Sq.pop();
5. remove nodes from all stacks lacking a root;
6. }
7. }
8. Sq.push(Cq);

Figure 7: Outputting a solution

The simple stacking method use here is not optimized for
space, since that is not the focus of this paper. However,
note that OutputAndPush() can easily be changed to use
the stacking method described in [10], which is optimized
along those lines.
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Figure 8: Cursor movement example

4.6 Cursor Movement Example
We now illustrate TwigOptimal’s cursor movement using

the query shown in Figure 8. In this example, there are
three cursors on posting lists, one per query tree node. The
scope of each x element is represented by a triangle enclos-
ing its descendant y and z elements. For clarity, the figure
does not show a complete XML document, but rather only
two sibling x elements. The left-to-right position of the let-
ters in the figure indicates the relative position of the data
nodes in the document. Physical cursor moves are depicted
by solid curved lines, labeled with the sequence number in
which they are performed, while virtual moves are depicted
by dashed lines.
At the beginning, the three cursors are positioned on x1,

y1, and z1, which do not form an extension. Cx is the min
cursor and there is no extension for it, so MoveCursors(x) is
called. Since x1 ends before y1 and z1, Cx is virtually moved
just past the end of x1. At that point, Cx is still the min cur-
sor, so it is physically moved to x2, after which Cz becomes
the min cursor. In the subsequent calls to MoveCursors(),
Cz and Cy are virtually moved within x2, causing postings
y2 and y3 to be skipped. Then Cy is physically moved to
y4. At that point Cx is the min cursor again, but the call
to Extension(x) returns false since Cz is virtual. Cz is then
physically moved to z2, Cx remains the min cursor, and the
next call to Extension(x) succeeds.
The call to OutputAndPush(x) stacks x2 and then Cx is

physically moved to the next x (not shown). At that point,
Cy is the min cursor and, since Extension(y) returns true,
y4 is stacked and physically moved to y5. The same steps
are repeated for y5 since it is also part of an extension. Cy
is then physically moved to the next y (not shown). This
ensures that all the y nodes within x2 have been exhausted.
Finally, Cz becomes the min cursor, Extension(z) returns
true, and z2 stacked. Since Cz is still the min cursor, it is
moved again, this time beyond x2. At that point, there are
four stack entries that make up two solutions. These will be
output after the next x node is stacked.

5. COMPARISON TO EXISTING
ALGORITHMS

Figure 9 and Figure 10 are used to illustrate how TwigOp-
timal can generate far fewer physical cursor moves than ex-
isting twig join algorithms. Both figures trace the evaluation
of the query //w//x//y//z on two sibling w elements. Fig-
ure 9 illustrates how the cursors would be moved using the
twig join algorithm described in [10], which represents the

x2

y2 y50 y51 y52...y49 y98

x3 x4... x49

= stacked cursor position

= current cursor positionQuery = //w//x//y//z

= physical move

w1

x1

y1

z1

y3...

w2

y100

z2

x50

y99

Figure 9: Counting physical cursor moves with existing
algorithms

state of the art among existing algorithms, while Figure 10
illustrates how the cursors would be moved in TwigOptimal.
As shown, both algorithms start out in the same state,

with the first solution w1, x1, y1 and z1 stacked, and with
Cw, Cx, Cy, Cz positioned on w2, x2, y2 and z2, respec-
tively. We compare the number of physical cursor moves
needed for each algorithm to reach the second solution, which
is w2, x50, y100 and z2.
In [10], when the test for an extension on y returns false,

a “broken edge” in the subtree rooted at y is identified. A
broken edge is a parent-child pair, where the parent cur-
sor does not contain its child cursor. The parent and child
cursors for the broken edge are then repeatedly moved in a
coordinated way until the parent cursor contains the child
cursor. As shown in Figure 9, this causes Cx and Cy to be
moved between x2 − x50 and y1 − y100, respectively, result-
ing in roughly 150 physical cursor moves to find the second
solution.
In contrast, as shown in Figure 10, TwigOptimal performs

only two physical cursor moves. Three virtual moves place
Cx and Cy within w2, and then two physical cursor moves
are made to find the second solution.

6. OPTIMALITY PROOF SKETCH
In this section, we provide a sketch of TwigOptimal’s op-

timality. Our main claim is stated in Theorem 1.

Theorem 1. Given an evaluation state <Q, C, S>, when-
ever a cursor is physically moved in TwigOptimal:

1. It is necessary to move one of the cursors considered
by TwigOptimal.

2. The cursor that is physically moved is moved as far
forward as possible without missing a solution.

For the first part of Theorem 1, we examine the two places
in TwigOptimal where forwardTo() is called to physically
move a cursor. In ExecuteQuery(), a cursor Cq is physically
moved after q has been found to be a part of an extension
(and thus, a solution). This physical move is necessary to
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Figure 10: Counting physical cursor moves with

TwigOptimal

check if Cq’s next position is part of a solution. For example,
in Figure 8, Cy has to be physically moved until it exits from
the x2’s subtree. If any other cursor is moved at that point,
the solution x2, y5 and z2 would be missed.
The second call to forwardTo() is performed in MoveCur-

sors() when the min cursor is virtual. In that case, the two
passes over the query tree have virtually moved cursors in
the subtree of the min cursor. If some of the cursors are
virtual, TwigOptimal cannot confirm that it has found an
extension. Therefore, TwigOptimal has to physically move
one of the virtual cursors to find out if it has found a solu-
tion. This is illustrated in Figure 8 when Cz is moved to
check if there is a z posting within x2.
For the second part of Theorem 1, it can be shown by in-

duction that the two-pass algorithm used in MoveCursors()
passes along restrictions on the maximum possible location
of the next physical cursor move from descendants to an-
cestors (in the bottom-up pass) and then from ancestors to
descendants (in the top-down pass). Therefore, after Move-
Cursors() has been called, the cursors will have been moved
as far forward as possible without missing a solution.
Note that if more than one virtual cursor is available to

be physically moved, TwigOptimal chooses the “best” cursor
using heuristics based on the available statistics [10]. This
means that TwigOptimal is not instance optimal [6], as in-
stance optimality can only be achieved if there was a way
to always choose the best cursor to move. However, Move-
Cursors() does guarantee that when a cursor is physically
moved, it is moved as far forward as possible without missing
a solution.
Also note that Theorem 1 assumes forward-only cursor

moves on a standard inverted index. Unfortunately, this
means that when an ancestor cursor is moved to contain
a descendant cursor in MoveCursorsBottomUp(), TwigOpti-
mal can behave inefficiently. Special indexes and the cursor
method forwardToAncestor() have been proposed to deal
with this situation [8, 13]. Instead of using a special index,
we propose an implementation of forwardToAncestor() that
simply moves the ancestor cursor forward to the descen-

dant cursor, then backs up the ancestor cursor to the first
position before the descendant cursor. In the (rare) case
of recursion, the backward step may have to be repeated.
If forwardTo() is modified to detect when to call forward-
ToAncestor() under the covers, then nothing in TwigOptimal
has to be changed to take advantage of this optimization.

Theorem 2. Assuming forward-only cursor moves, Twig-
Optimal performs the minimum number of physical cursor
moves to evaluate Q.

The proof follows from Theorem 1, where we conclude
that every physical cursor move performed by TwigOpti-
mal is necessary and goes as far forward as possible without
missing a solution.

7. EXTRACTION POINTS
Existing twig join algorithms assume that all path nodes

in a query tree need to be output. However, an XQuery
return clause often requires only a subset of the path nodes
being matched to be output. For example, in Figure 1, only
the title node needs to be output. By being aware of these
extraction points and “skipping” over data nodes that do
not need to be output, the number of cursor moves per-
formed by a twig join can be dramatically reduced. This sec-
tion describes how extraction points can be used to improve
TwigOptimal’s performance by making only minor changes
to ExecuteQuery(), as shown in Figure 11. Lines 9a–9j in
Figure 11 simply replace line 9 in Figure 2.

9a. if (q is not an extraction point and
no descendent of q is an extraction point) {

9b. p = parent of q;
9c. virtually forward q and all its

descendant path cursors to Cp.begin + 1;
9d. }
9e. else {
9f. Cq.forwardTo(Cq.begin + 1);
9g. if (no descendent of q is an extraction point) {
9h. virtually forward q’s descendant

path cursors to Cq.begin + 1;
9i. }
9j. }

Figure 11: Changes to ExecuteQuery() for extraction
points

To understand the code in Figure 11, let q be a path
node in the query tree with parent p and consider the four
possibilities for q and its descendants:

1. Neither q nor any of its descendants in the query tree
are extraction points.

2. Node q is an extraction point but none of its descen-
dants are extraction points.

3. Both q and some descendant of q are extraction points.

4. Node q is not an extraction point but some descendant
of q is an extraction point.

Case 1) is handled by lines 9a–9d. In this case, it should
be clear that TwigOptimal does not need to find all the ex-
tensions rooted at q. Consequently, once an extension for
q has been found, Cq and all its descendant cursors can be
virtually moved within Cp (line 9c).
Case 2) is handled by lines 9e–9i. In this case, it should

be clear that TwigOptimal does not need to find all the ex-
tensions below q. Consequently, after physically moving Cq
(line 9f), all its descendant cursors can be virtually moved
to within Cq (line 9h).
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Figure 13: Running time for the synthetic dataset

Finally, case 3) and case 4) fall through the first part of
the if-statement and are handled the same as in the ver-
sion of ExecuteQuery() without extraction points, that is,
just line 9f is executed. Also, although it is not shown, Out-
putAndPush() changes with extraction points. In particular,
if neither q nor any of its descendants are extraction points,
then Cq should not be stacked.

8. EXPERIMENTAL RESULTS
In this section, we present experimental results comparing

TwigOptimal with TSGeneric+ [9, 10], which represents the
state of the art among existing twig join algorithms, Results
are also provided to show how TwigOptimal’s performance
can be improved by being aware of extraction points.
Our experimental testbed was built on the Berkeley DB [14]

embedded database, where we implemented both TwigOp-
timal and TSGeneric+. All experiments were run on a
Linux Red Hat 8.0 workstation, with a 2.2 GHz Intel Pen-
tium 4 processor and 2 GB of main memory. Although,
the amount of main memory was large, both twig join algo-
rithms only access their posting lists in the forward direction
(with skips). Consequently, our running times are represen-
tative of any memory buffer large enough to hold at least the
internal pages of the B-tree and one leaf page per posting
list.
For data, we used the XMark [17] dataset and a synthetic

dataset [18]. For both datasets, the difference in the relative
performance of TwigOptimal and TSGeneric+ was similar.

8.1 Results without Extraction Points
In all our experiments, TwigOptimal and TSGeneric+

both used the same top-down strategy [10] for picking which
cursor to physically move next. As noted earlier, if both al-
gorithms use the same strategy for picking which cursor to
move next, TwigOptimal should never generate more phys-
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Figure 14: Physical cursor moves for the XMark dataset

ical cursor moves than TSGeneric+. Moreover, by looking
more globally at the query’s evaluation state to determine
which cursor to move next, TwigOptimal should be able to
generate fewer physical cursor moves in many cases.
Figure 12 shows the number of physical cursor moves for

three queries on the synthetic dataset, while Figure 13 shows
their running time using cold buffers. As shown, both algo-
rithms performed exactly the same on the first query. This
is because the query tree in that case only had two levels
(i.e., two cursors), providing little room for TwigOptimal
to optimize its cursor movement. However, as the queries
got more complex and the number of levels in their query
tree grew, TwigOptimal generated 40% fewer physical cur-
sor moves than TSGeneric+ and its running time improved
proportionally.
For the XMark dataset, we studied two queries, a small

one with a 4-node query tree, and a large one with a 10-node
query tree:

• //item//description[“science” and “paper”]

• //item//description//parlist//listitem//text [“science”
and “logotype” and “benefit” and “paper” and “wind-
sor”]

Figure 14 shows the number of physical cursor moves for
these queries. As with the synthetic dataset, on the smaller
query, both algorithms generated roughly the same number
of cursor moves, while for the larger query, TwigOptimal
generated 45% fewer cursor moves. TwigOptimal’s running
time also improved proportionally, but because of space lim-
itations, the graph with those results has been omitted.

8.2 Results with Extraction Points
Figure 15 and Figure 16 show how TwigOptimal’s perfor-

mance can be improved by being aware of extraction points.
The graphs in those figures were generated using the syn-
thetic dataset. Moving from left to right in the graphs, the
number of extraction points in the query decreases from all
4 nodes to 1 node. The left-most query represents TwigOp-
timal without any optimization for extraction points.
As expected, the number of physical cursor moves TwigOp-

timal made decreased as the number of extraction points in
the query decreased. The fact that they decreased some-
what linearly is an artifact of the dataset and the way it
was generated with uniform probabilities. In general, the
impact of extraction points on performance can vary dra-
matically, depending on the query and the dataset. The im-
provement in performance can be substantial anytime there
is a pattern like a[.//b], where there are a large number of
b nodes under each a node. To illustrate this, another data
point was taken from the XMark dataset. On that dataset,
the query //item//text with 2 extraction points generated
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Figure 16: Running time for queries with different num-
ber of extraction points

835,740 cursor moves, whereas the same query with 1 ex-
traction point //item[.//text] generated 435,000 cursor
moves, roughly half as many.

9. CONCLUSION
Because each cursor move can trigger I/O, the perfor-

mance of a holistic twig join is largely determined by how
many cursor moves it makes. Yet, existing twig join algo-
rithms have not been optimized along these lines. Instead,
they make a local, and hence sub-optimal, decision in choos-
ing which cursor to move next and how far to move it. In
this paper, we described TwigOptimal, a new holistic twig
join algorithm that minimizes the number of cursor moves
it makes by looking more globally at the query’s state to
determine which cursor to move next. Experimental results
were provided, showing that TwigOptimal can outperform
existing twig joins algorithms by up to 40%.
Another shortcoming of existing twig join algorithms is

that they assume all nodes in a query tree need to be out-
put. However, an XQuery return clause often requires only
a subset of the nodes being matched to be output. By being
aware of these so-called extraction points, we described how
TwigOptimal is able to further reduce the number of cur-
sors moves it makes. Experimental results were provided,
showing that this can provide a substantial improvement in
performance.
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