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ABSTRACT
Web textual advertising can be interpreted as a search prob-
lem over the corpus of ads available for display in a partic-
ular context. In contrast to conventional information re-
trieval systems, which always return results if the corpus
contains any documents lexically related to the query, in
Web advertising it is acceptable, and occasionally even de-
sirable, not to show any results. When no ads are relevant
to the user’s interests, then showing irrelevant ads should be
avoided since they annoy the user and produce no economic
benefit. In this paper we pose a decision problem “whether
to swing”, that is, whether or not to show any of the ads
for the incoming request. We propose two methods for ad-
dressing this problem, a simple thresholding approach and a
machine learning approach, which collectively analyzes the
set of candidate ads augmented with external knowledge.
Our experimental evaluation, based on over 28,000 edito-
rial judgments, shows that we are able to predict, with high
accuracy, when to “swing” for both content match and spon-
sored search advertising.

Categories and Subject Descriptors
H.3.m [Information Search and Retrieval]: Miscella-
neous

General Terms
Algorithms, Experimentation

Keywords
Web advertising, ad selection, result quality prediction

1. INTRODUCTION
Web advertising allows merchants to advertise their prod-

ucts and services to the ever growing population of Internet
users. Online advertising has quite a few benefits over its
brick-and-mortar sibling, as it allows making the ads rele-
vant to users’ actions, rapidly changing the inventory and
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pricing of ads, as well as measuring response and conver-
sion statistics [8, 26]. Online advertising is one of the major
sources of income for a large number of Web sites, including
search engines, blogs, news sites, and social networking por-
tals. A significant part of Web advertising consists of textual

ads, the ubiquitous short text messages usually marked as
“sponsored links” or the like. There are two primary chan-
nels for distributing such ads. Sponsored Search (or Paid

Search Advertising) places ads on the result pages of Web
search engines, with ads being driven by the search query.
All major Web search engines (Google, Microsoft, Yahoo!)
derive significant revenue from such ads. Content Match

(or Contextual Advertising) displays commercial ads within
the content of third-party Web pages, which range from indi-
vidual blogs and small niche communities to large publishers
such as major newspapers. Today, almost all of the for-profit
non-transactional Web sites rely at least to some extent on
advertising revenue.

Both types of textual advertising can be viewed as a search
over the corpus of available ads. The query triggering this
search is derived either from the user’s Web search query,
or from the content of the Web page where the ads are to
be displayed. In both cases, the ad search query can be
augmented with auxiliary information such as location, lan-
guage, and user profile.

In conventional Web search, as well as in most informa-
tion retrieval systems, if query terms are matched by some
documents in the indexed collection then this query will nec-
essarily yield some results. However, in Web advertising it
is acceptable, and occasionally even desirable, not to show
any results if no “good” results are available. That is, if
no ads are relevant to the user’s interests, then showing ir-
relevant ads should be avoided since they impair the user
experience, and eventually may drive users away or “train”
them to ignore ads. In any case, users are unlikely to click
on irrelevant ads, and hence there are no economic benefits
to such ads in either the pay-per-click or the pay-per-action
model.

The ability to reliably assess the relevance of retrieved ads
is also valuable for another reason. Ad selection platforms
usually have multiple ad retrieval mechanisms that run in
parallel and independently select ads. These sets are then
merged and re-ranked together to select a few ads that are
shown to the user. Different mechanisms might work well on
different types of content. Therefore, if we could automat-
ically determine when a certain mechanism is not working
well for a particular content, we could exclude its results
from the re-ranking.



In this paper, we investigate the problem of automatically
predicting whether or not an individual ad or an entire set

of ads is relevant enough to be displayed. We call this the
“swing / no swing” problem, in reference to the game of
baseball, where the goal of swinging is to hit a home run, or
at least get on base. In the advertising case,“swinging”refers
to showing a set of ads. The goal of swinging in advertising
is to show many relevant ads (a home run, if you will) or, at
the very least a set of ads that do not drive the user away
(a single base hit). In advertising, as with baseball, it is
undesirable to always swing. In fact, it is often better not
to swing at all, especially if the set of candidate ads are not
relevant to the current context.

In the remainder of this paper, we propose and analyze
two approaches for solving the swing / no swing problem.
The first is a simple thresholding approach that relies on the
scores produced by the ad ranking system and analyzes the
candidate ads individually. The second is a more sophisti-
cated machine learning approach uses a set of heterogeneous
features to predict whether the entire set of candidate ads
should be displayed or discarded. Notably, the features used
for the swing decision are not available during the retrieval
process, and this secondary filtering step is made possible
through the introduction of additional knowledge.

The contributions of this paper are threefold. First, we
pose the swing problem, which is a novel advertising task
and and motivate the importance of the problem. Second,
we propose two novel methods for solving this problem, one
of which is based on global score thresholding and the other
which is framed as a machine learning problem. Our empir-
ical evaluation shows that both approaches can significantly
improve ad relevance compared to a system that always
shows ads. Third, we propose a novel set of knowledge-rich
semantic features that are highly predictive of ad quality.

The remainder of this paper is laid out as follows. First,
in Section 2, we describe the details of our swing/no swing
model, including the various features used in our decision
framework. Then, in Section 3, we evaluate our proposed
approach in content match and sponsored search advertising
settings. Section 4 discusses related work on advertising and
predicting result set quality. Finally, Section 5 concludes the
paper and describes potentials areas of future work.

2. THE SWING/NO SWING MODEL
In this section, we describe our two approaches for de-

termining when to advertise (swing) or when not to adver-
tise (no swing). Given a query or a target page1 for which
we want to produce ads, we assume that we have a “black
box”ad ranking system that retrieves a set of candidate ads.
We make no assumption as to how this set of candidates is
produced. We only assume that some meaningful relevance
score is assigned to each ad. Furthermore, we assume that
every ad has some data associated with it, including a ti-
tle, description, landing page, bid phrase, and a bid price.
This data is fairly standard and used by most commercial
search engine advertising systems. To enrich the ad repre-
sentation, we annotate our ads with five semantic classes,
using the technique proposed by Broder et al. [3].

2.1 Thresholding Approach
1To simplify the presentation, we use the term “query” to
describe both queries for sponsored search and Web pages
for content match.

The first method that we propose is based on global score
thresholding. If we assume that the scores produced by our
“black box” ad ranking system are indeed reasonable, then
we can further assume that ads with higher scores are more
likely to be relevant than those with lower scores. Therefore,
we propose setting a global score threshold that determines
whether or not an ad should be returned or not.

In this scenario, different threshold settings return differ-
ent sets of ads. If, for a given query, all of the ads have
a very low score that is below the global threshold, no ads
will be returned. This corresponds to a no swing decision.
For those queries that retrieve at least one ad, we have ef-
fectively made a swing decision. Therefore, every threshold
corresponds to a different level of coverage, where coverage
is defined as the proportion of queries for which at least one
ad is returned. Different tradeoffs between coverage and ef-
fectiveness can be achieved by tuning the threshold. Such
tradeoffs must consider expected revenue (more ads shown,
more revenue), as well as user dissatisfaction (more non-
relevant ads, more dissatisfied users). Effectively modeling
such tradeoffs is a very difficult problem that requires un-
derstanding both short-term and long-term user behavior.
Exploring these tradeoffs is beyond the scope of this work.

The primary advantage of this technique is that it is very
simple to implement. The biggest disadvantage is the need
to choose a reasonable threshold. Even though we assumed
that the scores produced by our ad ranking system are rea-
sonable, it is very likely, in practice, that they are very
noisy, and reliably setting a global threshold may be dif-
ficult. Although not explored in this work, better results
may be achieved via score normalization [20, 22].

2.2 Machine Learning Approach
The second method that we propose frames the swing/no

swing problem as a machine learning problem. The prob-
lem can be naturally formulated as a binary classification
problem. Given a query and the set of candidate ads, our
goal is to predict whether or not the entire set of ads is rele-
vant enough to display. This is very different from the task
of ranking ads, which takes a query/ad pair as input, and
produces a score that is then used for ranking. Here, our
prediction mechanism takes a query and a set of ads as in-
put and produces a yes/no decision as to whether the entire
set should be displayed.

To form the ground truth for training the model, we must
aggregate human judgments for individual query/ad pairs
to distill a single judgment for each query/set-of-ads. Each
ad/query pair gives a number of votes, according to its hu-
man judgment, in favor of the swing action for the query. We
decide that we should swing if the average number of votes
is lower than some fixed threshold (denoted by τ). By set-
ting the threshold very low, we will only show ads in a small
number of cases where the ad result set is very high quality.
On the other hand, if the threshold is set very high then ads
will be shown for many queries, although the quality of the
ads will not be as good. Therefore, the threshold should be
considered a parameter that can be used in conjunction with
a more complex, holistic cost function to determine whether
or not to show ads. In our evaluation, we examine various
values for τ .

We use Support Vector Machines (SVMs) for learning a
classification model. We use SVMs because they have been



shown to be highly effective for a variety of other text classi-
fication tasks. It is important to note that any binary clas-
sifier can be used for this task, including Näıve Bayes and
boosted decision trees. It is not our goal to evaluate a wide
range of classifiers, but rather to show how such classifiers
can be applied to the task at hand.

2.3 Feature Construction
When framed as a classification problem, the swing/no

swing problem can be reduced to choosing a set of features
that are good at discriminating between good and bad sets
of ads. In this section, we describe a variety of features
that we hypothesize will be useful for learning the SVM-
based swing/no swing predictive model. The features we
propose attempt to capture two very different aspects of the
candidate set of ads. The first aspect we aim to capture is
the notion of ad relevance. In order to determine if an entire
set of ads is relevant, it is important to have some measure of
how relevant each individual ad is. Therefore, many of our
features focus on standard information retrieval measures
of relevance. Given a relevance measure for each individual
ad, we must combine, or aggregate, the values in such a way
that it characterizes the entire set of ads. We propose four
different ways of aggregating these feature values.

The other aspect that we focus on is result set cohesive-

ness. Here, rather than aggregating features computed over
individual query/ad pairs, we compute features over an en-
tire set of ads. The features that we propose attempt to
capture how cohesive the set of ad results are. We examine
various types of cohesiveness, ranging from how cohesive the
ad scores are to how semantically cohesive the ads are.

2.3.1 Ad Relevance Features
The first class of features that we consider have been pre-

viously shown to be highly effective for ranking individual
ads [10]. Since these features are good for ranking ads, it is
likely that they will also be useful for predicting whether an
entire set of ads is relevant or not. These features, in their
original form, are computed over query/ad pairs. However,
the swing/no swing decision is made for every query or tar-
get page. Therefore, we must aggregate the query/ad pair
feature values to produce a single value for the query/set-
of-ads pair. Given a feature X that is defined over a single
query/ad pair, we compute four aggregated feature values
as follows:

Xmin(Q,A) = min
A∈A

X(Q, A)

Xmax(Q,A) = max
A∈A

X(Q, A)

Xmean(Q,A) =
X

A∈A

X(Q, A)

|A|

Xwmean(Q,A) =
X

A∈A

SCORE(Q, A) · X(Q, A)
P

A′∈A SCORE(Q, A′)

where A is the candidate set of ads, Q is the query and
SCORE(Q, A) is the score returned by ad ranking system
for ad A with respect to Q. The aggregate features attempt
to capture general properties of the entire set of ads based
on the characteristics of individual ads. The remainder of
this section describes the ad relevance features (i.e., X) that
we use to compute aggregate feature values.

Word Overlap Ribeiro-Neto et al. [24] found that con-
straining the ads such that they were only placed in target
pages if the target page contained all of the bid terms im-
proved precision. Our setting is different, so constraining
the ads in this way eliminates almost every ad candidate.
Rather, we encode this constraint in a set of four features
that attempt to measure the degree to which the ad terms
overlap with the query.

For the content match data, the first three features are
binary, computed as follows:

if (∀t ∈ A) t ∈ Q, F1 = 1, and 0 otherwise.
if ∃t ∈ A such that t ∈ Q, F2 = 1, and 0 otherwise.
if ¬∃t ∈ A such that t ∈ Q, F3 = 1, and 0 otherwise.

The first is “1” if all of the bidded terms from the ad ap-
pear in the query. The second is “1” if some of the bidded
terms appear in the query. The third is “1” if none of the
bidded terms appear in the query. Our fourth word over-
lap feature is a continuous feature that is defined as the
proportion of bidded terms that appear in the query. The
features were computed in the analogous way for the spon-
sored search data, except that the role of the query and the
ad are reversed, because the query is typically much shorter
than the ad.

Cosine Similarity The cosine similarity sim(Q, A) be-
tween the query Q and the ad A is computed as follows:

sim(Q, A) =

P

t∈Q∩A
wQtwAt

q

P

t∈Q
w2

Qt

q

P

t∈A
w2

At

(1)

where wQt and wAt are the tf.idf weights of term t in Q

and in A, respectively. The tf.idf weight wQt of term t in Q

is as wQt = tf · log2

`

N+1

nt+0.5

´

where N is the total number
of ads, and nt is the number of ads in which term t occurs.
The weight wAt of term t in A is computed in the same way.

Translation The bid terms, and for that matter the
title and description in the ads, are a necessarily sparse rep-
resentation of the full advertisement. As the language of
advertising is quite concise, and the language of contextual
advertising is even more so, we can imagine that some infor-
mation is lost when translating ad title and descriptions to
bidded terms and a sentence-length description. To capture
the difference in the vocabulary, we build a translation table
using the implementation of IBM Model 4 [4] in GIZA++ [1]
from a parallel corpus of ad title and descriptions paired with
their corresponding landing pages. The translation table
gives a distribution of the probability of a word translating
to another word, given an alignment between two sentences,
and other information such as how likely a term is to have
many other translations, and the relative distance between
two terms in their respective sentences, as well as the ap-
pearance of words in common classes of words. Details of
IBM Model 4, and its implementation are provided in [4, 5]
and [1].

After constructing the translation table, we compute two
features. The first feature is the average of the translation
probabilities of all terms in the target page, translating to all
terms in the ad title and description. The second is the pro-
portion of terms in the target page that have a translation
in the ad title and description. Although learning a trans-
lation table can be quite inefficient, this step can be done
once, offline. Computing the actual features is a matter of



looking up pairs of terms in the translation table.

Pointwise Mutual Information Another measure of
association between terms is pointwise mutual information
(PMI). We compute PMI between terms of a target page or
a query Q and the bidded terms of an ad. PMI is based on
co-occurrence information, which we obtain from the query
logs of a commercial search engine:

PMI(t1, t2) = log2

P (t1, t2)

P (t1)P (t2)

where t1 is a term from Q, and t2 is a bidded term from
the ad A. P (t) is the probability that term t appears in the
query log, and P (t1, t2) is the probability that terms t1 and
t2 occur in the same query.

In the case of content match data, we form the pairs of
t1 and t2 by extracting the top 50 terms according to their
.idf weight from each target page. The idf weight is com-
puted from an index of all the ads. For each pair (Q, A) we
compute two features: the average PMI and the maximum
PMI, denoted by PMI(avg) and PMI(max), respectively.
The PMI for all pairs in the query log can be computed of-
fline, and then the features require a table lookup for each
query-ad pair of terms.

Chi-Squared Another measure of association between
terms is the χ2 statistic, which is computed with respect to
the occurrence in a query log of terms from a target page or
a query, and the bidded terms of an ad. We compute the χ2

statistic for the same pairs of terms on which we compute
the PMI features. Then, for each pair of query Q and ad
A, we count the number of term pairs that have a χ2 larger
than 95% of all the computed χ2 values. As with PMI, the
χ2 statistic can be computed offline for each pair of terms
in the query log.

Bid Price We also use the ad bid price as a feature
in determining whether or not to swing. If all of the ads
retrieved have large bid prices, then it may be the case that
the result set is of higher quality. Conversely, if all of the
ads have fairly low bid prices, then it may indicate that the
result set has poor quality.

2.3.2 Result Set Cohesiveness Features
We now describe our result set cohesiveness features. These

features attempt to capture how cohesive, or coherent, the
entire set of results is. Unlike the ad relevance features,
which are computed for each ad and then aggregated, these
features are directly computed over the entire set of ads.
Previous research has shown that result set cohesivenses is
highly correlated with result set quality for ad hoc retrieval
and web search [11, 29]. Therefore, we hypothesize that
such features will also be useful when applied to advertising.
Here, we use traditional measures of topical cohesiveness and
propose a novel measure of the semantic cohesiveness of a
set of ads.

Score Coefficient of Variation Given a set of ad can-
didates, we compute the coefficient of variation of the ad
scores in order to measure the variance of ad scores for a
given query. The coefficient of variation is used instead of
the standard deviation or variance because it is normalized
with respect to the mean. Since our ad scores are not nor-
malized across queries, this normalization is important. The

feature is computed as follows:

COV =
σSCORE

µSCORE

where σSCORE is the standard deviation of the ad scores in
the result set, an µSCORE is the mean of the ad scores.

Topical Cohesiveness The next set of features at-
tempts to measure how topically cohesive the set of ad re-
sults is. Several information retrieval studies have shown
that result set quality is highly correlated with the topical
cohesiveness of the results, with high quality result sets ex-
hibiting strong cohesiveness [12]. Therefore, we investigate
whether or not these types of measures may also be useful
in the context of predicting when to advertise. We now de-
scribe several ways to measure the topical cohesiveness of a
set of ads.

Before computing any measures, we first build a statistical
model, estimated from the set of ad candidates, as follows:

θz =
X

A∈A

P (z|A)P (A|Q) (2)

where P (z|A) is the likelihood of item z given ad A, and
P (A|Q) is the likelihood of ad A given query Q. Here, θz is
shorthand for P (z|Q), which is a multinomial distribution
over items z. In this work, we consider two type of items –
terms and semantic classes. We now describe how P (z|A)
and P (A|Q) are estimated for both types of items.

For terms, we estimate P (z|A) using the maximum likeli-
hood estimate and use the ad scores to estimate P (A|Q) as
follows:

P (A|Q) =
SCORE(Q, A)

P

A′∈A SCORE(Q, A′)
(3)

where, as before, SCORE(Q, A) is the score returned by the
ad scoring system. When θ is estimated using Equation 2
in this way using terms, it is often called a relevance-based
language model, or just a relevance model [19].

We estimate θz in a similar way for semantic classes. For
each ad, we have a set of up to five semantic classes and
their associated scores. Since we have scores for the seman-
tic classes, we can leverage this information in order to es-
timate a more accurate semantic class relevance model. We
estimate P (z|A) as follows:

P (z|A) =
SCORE(z, A)

P

c∈C SCORE(c, A)

where C is the set of semantic classes and SCORE(c, A) is
the score assigned by the classifier to class c for ad A [3].
In addition, P (A|Q) is estimated according to Equation 3.
Plugging these class-based estimates into Equation 2 yields
a relevance model over semantic classes. It should be noted
that we are the first to apply the idea of relevance modeling
to semantic classes in this manner.

After building a relevance model over terms or classes, the
cohesiveness of the model must be measured. The first mea-
sure we use is called the clarity score, which has been used
successfully in the past to predict the quality of search result
sets [12]. The clarity score is the KL-divergence between the
relevance model and the collection (background) model.The
clarity measure attempts to capture how “far” the relevance
model estimated from the set of ad candidates (θ) is from

the model of the entire set of ads (θ̂). If the set of ad can-
didates is very cohesive and focused on one or two topics,



Feature Type Field(s) # Features
OV ERLAP W 24

OV ERLAP (all) BP 24
OV ERLAP (some) BP 24
OV ERLAP (none) BP 24
OV ERLAP (pct) BP 24

COS T,D,BP,W 96
TRANS(prob) W 24
TRANS(prop) W 24

PMI(avg) W 24
PMI(max) W 24

χ2 W 24
PRICE P 24
COV S 6

H T,D,C 18
CLARITY T,D,C 18

Table 1: Summary of features used in the SVM pre-
diction model and the fields they are computed over,
where T denotes title, D is description, BP is bid
phrase, W is whole ad, P is bid price, S is ad score,
and C is semantic class.

then the relevance model will be very different from the col-
lection model. However, if the set of topics represented by
the ad candidates is scattered and non-cohesive, then the
relevance model will be very similar to the collection model.
The clarity score is computed as:

CLARITY (θ) =
X

z∈Z

θz log
θz

θ̂z

where θ̂ is the collection model (maximum likelihood esti-
mate computed over the entire collection of ads) and Z is
the universe of terms or classes.

Another closely related measure of cohesiveness is the en-

tropy of the relevance model, which is closely related to the
clarity score. It is computed as:

H(θ) = −
X

z∈Z

θz log θz

We include this feature since it is a more classic measure
of cohesiveness and because it does not require the compu-
tation of a background model. We compute both clarity
and entropy on relevance models estimated from the ad title
terms, ad description terms, and ad semantic classes, result-
ing in a total of six topical cohesiveness features.

3. EMPIRICAL EVALUATION
In this section, we describe the details of our empirical

evaluation. This includes the details of our experimental
design, as well as results of our experiments that evaluate
the effectiveness of our proposed approaches to the swing/no
swing problem.

3.1 Implementation and Data Details
In Section 2.3, we described nine types of features for use

with the SVM approach. Up until this point, however, we
have not described what candidate set of ads the features
are computed over. There are many possibilities, including
using all ads that are retrieved for a given query or using the

top k retrieved ads, for some fixed k. Other options exist,
but these are the most straightforward strategies.

In our experiments, we compute each feature over the
top k ads retrieved for multiple settings of k (i.e., k ∈
{1, 5, 10, 25, 50, 100}). That is, we compute each feature us-
ing the top ranked ad, the top 5 ranked ads, the top 10,
and so on. Thus, each feature is computed at six differ-
ent depths. This allows the classifier to automatically learn
which depths are the most important for each feature, rather
than us manually specifying the depth each should be com-
puted at.

Our experimental feature set is summarized in Table 1.
For each feature type, we list the ad fields that the feature
is computed over, and the total number of features of that
type. There are a total of 402 feature in all.

We use the SVMlight2 implementation of Support Vector
Machines [16]. We perform 10-folds cross validation and
experiment using a variety of kernels (linear, polynomial,
and radial basis). We optimize the SVM model for accuracy
by sweeping over a wide range of kernel hyper-parameters
and misclassification cost values.

In order to gain as much insight into the problem as possi-
ble, we run our experiments against two content match data
sets (denoted CM1 and CM2) and one sponsored search data
set (denoted SS). The CM1 and CM2 data sets consist of 199
and 1103 Web pages, respectively. The SS data set is a col-
lection of 642 queries. By using both content match and
sponsored search data sets, we can analyze what, if any-
thing, changes when our proposed solution is applied to two
very different advertising tasks.

For each data set, we have editorial judgments of ad rele-
vance. These judgments were done on individual query/ad
pairs. For the two content match data sets, the possible
judgments are 1 (excellent), 2 (good), and 3 (bad), while
the judgments for the sponsored search data set range from
0 (perfect) to 5 (bad). There are 5554 and 13789 human
judgments for the CM1 and CM2 data sets, respectively,
and 8923 human judgments for the SS data set. For all
three data sets, we assume judgments of 1 or 2 are relevant
and all other judgments are non-relevant, thereby binarizing
the non-binary judgments.

Throughout our experiments, we measure ad relevance
effectiveness using Buckley and Voorhees’ BPREF metric,
since the judgments we have for each of these data sets are
incomplete [6]. We also evaluated our approaches using var-
ious other metrics, including precision at k (k = {1, . . . , 5})
and mean average precision. Although not reported here due
to space limitations, we note that none of the conclusions
drawn herein change as the result of using these alternative
metrics.

3.2 Thresholding Approach
We begin by analyzing the effectiveness of the threshold-

ing approach. One possible way to evaluate the approach
is to plot BPREF versus the threshold value. However, the
threshold values themselves are of little value to us, as they
do not provide much information. Instead, we choose to plot
BPREF versus coverage, where coverage is defined to be the
proportion of queries for which at least one ad is shown.
This is a commonly used metric in online advertising, as
search engines typically try to maximize both coverage and
relevance. However, in most cases, BPREF (or precision),

2http://svmlight.joachims.org/
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Figure 1: BPREF, as a function of coverage, for CM1, CM2, and SS (left to right) using thresholding.

decreases as the coverage increases. This is very similar to
the behavior observed in precision-recall curves.

Figure 1 plots the BPREF as a function of coverage for the
three data sets. The general trend across the plots is for the
BPREF to decrease as the coverage increases. However, this
is not always the case, as the effectiveness for the CM1 data
set actually increases until about 80% coverage, at which
point it begins to decrease. Since this is a new task, there
are no previously established baselines that we can compare
these results against.

In practice, these curves can be used to determine the
best threshold to use for a particular task. Depending on
the goals of the system, one could construct a cost function
that is some combination of coverage and relevance. The
threshold that optimizes the cost could then be used. Of
course, in reality, other variables should also be considered,
such as revenue and click-through.

3.3 Machine Learning Approach
Next, we evaluate how well our proposed SVM frame-

work, and its associated feature set, can be used to predict
the quality of sets of ads for various settings of τ (see Sec-
tion 2.2). Since this is a new task, and no baselines exists, we
compare our results against a majority rules classifier which
always returns the majority class. The results are given in
Table 2 in the “SVM Accuracy” column. Bold results indi-
cate statistically significant improvements over the majority
rules baseline classifier.

For the two content match data sets, CM1 and CM2, we
observe classification accuracies of at least 69% for every
threshold setting. Obviously, when the class distributions
are heavily skewed, as is the case when the threshold is very
high or low, high prediction accuracy is easily achieved. In
these cases, it is difficult for the classifier to do anything
but classify every example as the majority class, simply be-
cause there is so little training data for the minority class.
Therefore, it is more interesting to analyze the 2.2 and 2.6
threshold settings, which roughly correspond to showing ads
40% and 60% of the time, respectively. For both of these
settings, our technique significantly improves over classifying
according to the majority class. This shows that our feature
set is capable of distinguishing between good and bad sets
of ads. We note that the results observed on the CM1 data
set are typically better than the CM2 results. This is likely
due to the fact that the CM1 data set is much cleaner and
contains fewer noisy (e.g., spam, non-English) pages than
the CM2 data set.

Similar results are obtained for the sponsored search data

set SS, although the absolute values are slightly lower than
the content match data sets. One reason for this decreased
accuracy is the fact that sponsored search tries to match ads
to queries, which are very short segments of text that contain
little information. On the other hand, in content match,
we match ads against entire Web pages, which are longer
and contain more information. Therefore, the sparse query
representation results in noisier and less accurate feature
values, especially for the ad relevance features, which makes
prediction more difficult. One potential way to overcome
this obstacle is to enrich the query representation using Web
search results or other external resources [21, 25]. This is
something we plan to investigate as future work.

3.4 Comparison of Techniques
We now compare the effectiveness of our two proposed

swing/no swing approaches by carrying out the following
experiment. Given a data set and a relevance threshold τ ,
a SVM swing/no swing model is learned on a training set.
The learned SVM model is then applied to a test set and the
accuracy of the swing/no swing decision is measured. The
coverage on the test set is also computed. As before, the
coverage is simply the fraction of queries for which the SVM
predicted to swing. Finally, the BPREF, to a maximum of
depth 5, is computed over all the queries the SVM predicted
to swing on. This provides a measure of how relevant the
ads are using the SVM swing/no swing model.

In order to compare the SVM model with the thresholding
model, we then find the global score threshold that yields
the same coverage as that observed when the SVM swing/no
swing model is applied. That is, we find the global score
threshold that results in one or more ads being returned for
the same number of queries as the SVM model. After ap-
plying the global score threshold, we compute the BPREF.
This BPREF can then be directly compared to the BPREF
obtained from using the SVM model, since they are both
computed at the same coverage level. The model that gives
the largest BPREF should then be preferred.

The results of this experiment are given in Table 2. For
each data set and relevance judgment threshold (τ) pair,
the table lists the accuracy of the SVM model at predicting
whether or not to swing, the coverage achieved by apply-
ing the SVM model to the query set, and the BPREF for
both the SVM model and the threshold model (at the same
level of coverage). The τ = ∞ case corresponds to always
swinging, which is assumed to be the default behavior.

We first compare the relevance of the ads returned by
the SVM and thresholding approaches to the relevance of



Data τ
SVM Query BPREF

Accuracy Coverage Thresh. SVM

CM1

1.4 81.90 16.6 .1518 .2118†
1.8 79.90 35.7 .1556 .2075†
2.2 78.39 49.7 .1666 .1896†
2.6 76.88 64.8 .1668 .1952†
∞ 100 100 .1488 .1488

CM2

1.4 93.10 2.1 .1112 .1191
1.8 80.87 9.9 .1219 .1634†
2.2 70.26 23.9 .1186 .1442†
2.6 69.27 59.6 .1060 .0933
∞ 100 100 .0863 .0863

SS

3.0 80.22 22.3 .1925† .1751†
3.5 69.63 37.4 .1926† .1437
4.0 63.08 50.1 .1769† .1329
4.5 70.09 64.4 .1482† .1314
∞ 100 100 .1148 .1148

Table 2: Summary of the swing/no swing experi-
ments. SVM swing/no swing prediction accuracy,
coverage, SVM BPREF, and threshold BPREF are
provided for the three data sets at various relevance
threshold levels (τ). Bold accuracy values indicate a
statistically significant improvement over a classifier
that always predicts the majority class according to
a one-tailed t-test at the p < 0.05 level.

the ads returned when no swing mechanism is used (i.e.,
τ = ∞). If the swing mechanisms are truly effective, then,
not only will ads be shown for fewer queries, but the ads
returned should also generally be more relevant. In Table 2,
BPREF values marked with a † indicate a statistically sig-
nificant improvement compared to always showing ads. As
we see from the results, the SVM approach is significantly
better for 8 out of 12 settings, whereas thresholding is sig-
nificantly better only 5 out of the 12 settings. The SVM ap-
proach was effective for both content match and sponsored
search, while thresholding was only effective on the spon-
sored search data. This behavior may be due to the fact
that many of the SVM features are unreliably estimated in
the case of sponsored search, since the query is so sparse.
As mentioned before, we hypothesize that augmenting the
query with search results or other external knowledge would
likely improve the effectiveness of the SVM approach on the
SS data set. Therefore, these results suggest that the two
proposed swing mechanisms are, indeed, effective at improv-
ing the relevance of the ads being returned. As expected, as
coverage increases, predicting swing or not swing becomes
less useful. In situations where recall is unimportant, and
very high precision is necessary, a swing mechanism could
be very powerful.

Next, we investigate which of the two swing approaches
returns the most relevant ads. In Table 2, a bold BPREF
value indicates a statistically significant improvement over
the other swing approach. For example, for the CM2 data
set, with τ = 2.2, the SVM approach is significantly bet-
ter than the thresholding approach. The results are simi-
lar to our previous observations, that the SVM approach is
more effective than the thresholding approach for the con-
tent match data sets, and that the thresholding method is
more effective on the sponsored search data set. However,
it is important to notice that the thresholding approach is

Data τ
SVM Query BPREF

Accuracy Coverage Thresh. SVM

CM1

1.4 87.94 14.1 .1478 .2219†
1.8 87.90 33.7 .1497 .2019†
2.2 87.94 49.7 .1653 .1917†
2.6 86.43 58.3 .1677 .1929†
∞ 100 100 .1488 .1488

CM2

1.4 94.02 1.1 .1589 .1068
1.8 81.69 2.9 .1182 .1382
2.2 70.53 22.5 .1330 .1804†
2.6 72.35 86.7 .1059 .0943
∞ 100 100 .0863 .0863

SS

3.0 82.71 4.1 .2500† .3889†
3.5 71.96 13.6 .2339† .2802†
4.0 69.63 54.9 .1650† .1539†
4.5 73.99 86.57 .1272 .1254
∞ 100 100 .1148 .1148

Table 3: Summary of the swing/no swing feature se-
lection experiments. Bold accuracy values indicate a
statistically significant improvement over a classifier
that always predicts the majority class according to
a one-tailed t-test at the p < 0.05 level.

only significantly better than the SVM approach for 1 out of
the 12 settings. This suggests that the SVM approach, de-
spite its limitations on the sponsored search data, is superior
to the simple thresholding approach. Therefore, considering
the entire set of ad candidates, as is done in the SVM ap-
proach, results in a more robust model than considering each
ad separately, as the threshold approach does.

3.5 Feature Selection
When performing a failure analysis of our SVM, we found

that many of our features are very noisy. In addition, by the
very nature of how they are defined, many of the features
are also strongly correlated with each other. Both of these
factors make it difficult to learn a highly effective classifi-
cation model. Therefore, we investigate how feature selec-
tion can be used to alleviate these issues. Feature selection
is commonly used for tasks that have many noisy features
and/or many highly correlated features. Here, we use a sim-
ple greedy feature selection strategy that aims to directly
maximize accuracy. During each iteration, the feature that
increases accuracy the most is added to the model.

In our experiments, we use the greedy feature selection
strategy to choose 10 features for each model learned. We
chose to use 10 features because preliminary experiments
suggested that diminishing returns, in terms of improved
accuracy, start to set in after just 5-10 features have been
selected.

Table 3, which is analogous to Table 2, shows the results
of our feature selection experiments. We first compare the
accuracy of the SVM (“SVM Accuracy” column) with and
without feature selection. As the results show, the accu-
racy of the SVM with feature selection is consistently better
than the accuracy of the SVM without feature selection. In
fact, the feature selection accuracy is never worse than the
non-feature selection accuracy. The improvements are the
most dramatic on the CM1 data set, which saw relative im-
provements of up to 12%. All of the improvements on this
data set were statistically significant, as well. These results



support our hypothesis that our feature set contains many
noisy and correlated features and that feature selection can
be used to consistently improve classification accuracy.

Next, we investigate whether the improved classification
accuracy translates into improved BPREF. Although it is
possible to compare the BPREF values in Table 3 with the
BPREF values in Table 2, such a comparison is not com-
pletely fair, because the coverage in the two tables is dif-
ferent. Therefore, we proceed as before, and compare the
BPREF of the SVM approach against the BPREF of the
threshold approach. The SVM approach, without feature se-
lection, outperforms (or equals) the threshold approach on 7
out of 12 settings of τ (4 out of 12 were significantly better).
With feature selection, the SVM approach outperforms the
threshold approach for 8 out of 12 settings of τ (3 out of 12
were significantly better). Therefore, from a high level, there
is little improvement in BPREF as the result of using feature
selection, despite the improvement in SVM accuracy. This
may be the result of our ad ranking system producing poor
rankings for the queries that the SVM swings on. Somewhat
paradoxically, even if the SVM could predict which queries
to swing on with 100% accuracy, there is no guarantee that
the resulting BPREF will be perfect, or even better than a
less accurate swing model, since the ad ranking system it-
self is not perfect and has limitations. Therefore, the swing
prediction model can only improve overall ad quality to a
certain point. Beyond that point, improvements in effec-
tiveness can only be achieved by improving the underlying
ad ranking system.

Finally, it should be noted that feature selection can not
only help improve effectiveness, but it can also improve the
efficiency of swing prediction at test time, since the num-
ber of features that need to be computed is significantly
reduced. As we described, our feature selection models con-
sist of only 10 features versus 402 when no feature selection
is performed.

Therefore, our results suggest that feature selection is use-
ful for improving the accuracy and efficiency of the SVM-
based swing model. Improvements in ad quality can be
achieved, as well, as long as the underlying ad ranking sys-
tem is highly effective in the first place.

3.6 Feature Analysis
Thus far, we have only investigated high level evaluation

measures, such as accuracy and BPREF. These measures
provide insights into how our overall system works, but it
does not reveal which features in our model are the most
useful. We analyzed the usefulness of the features in our
model in two ways.

First, we looked at which features tend to get chosen early
on during the feature selection process we just described.
This analysis provides insights into the general importance
of each feature and how discriminative each is for predict-
ing swing or no swing. We found that four features were
consistently chosen first during training. These features are:
1) mean cosine similarity computed over the whole ad, 2)
semantic class entropy, 3) mean cosine similarity over the
ad title, and 4) mean χ2. The depth at which these features
were computed varied widely, however we found that depths
5 and 10 were selected the most during the early stages of
training.

In addition to looking at the order in which features are
selected, we also investigate how well each feature correlates

with the ground truth (result set quality). Table 4 lists the
ten features with the largest absolute correlation (|ρ|) for
each data set. When analyzing the sign of the correlations
listed in the table it is important to recall that low judgments
are good and high judgments are bad. Since there are so
many features, it is impossible to give a detailed analysis of
each. Instead, we note some general observations.

In all of our experiments, the cosine similarity feature,
applied to ad titles, showed strong correlation. Although not
as strong, cosine similarity computed over the ad description
and ad bid phrases also exhibited strong correlations. The
overlap, translation, PMI, and χ2 feature types also showed
relatively strong correlations, but not as consistently as the
cosine similarity features.

The entropy, computed using semantic classes, was con-
sistently the best of the topical cohesiveness measures. This
result is interesting, in that it shows that the distribution
over semantic classes in the top ranked ads are more pre-
dictive of ad quality than the actual terms that make up
the ads themselves. In addition, the entropy measure al-
ways had stronger correlations than the clarity score. Since
the clarity score has been shown to be a good predictor for
result set quality in general search [12], our result suggests
that entropy may also be useful for the task. The topical
cohesiveness measures are more important on the sponsored
search data set. As mentioned before, this probably results
from the fact that cosine similarity and other related features
are computed more accurately for content match, where the
query is an entire Web page. Since the cohesiveness mea-
sures are agnostic with respect to query representation, they
are more stable across tasks.

No statistically significant correlation was found to exist
between the aggregated bid price features and average ad
quality. This does not necessarily mean that there is no
correlation between bid price and ad quality, only that no
correlation exists for our matched ads.

3.7 Learning from Clicks
One interesting option for training the kind of models

discussed above involves using click-through data directly,
from users feedback, rather than editorial judgments (e.g.,
see [17]). This might prove advantageous for at least two rea-
sons. First, learning on click-data allows indefinitely large
and up-to-date training sets without the need for costly hu-
man editorial judgments to be made. Second, in online ad-
vertising the quality of a system is ultimately measured in
terms of clicks, thus optimizing accuracy on clicks means
optimizing directly the desired global objective function.
For learning on click-data online learning, rather than batch

learning, might be preferable, since the training data is never
considered all at once, but only one item at a time. In an
exploratory experiment in this direction, we evaluated an
online perceptron algorithm [9] in place of SVMs and found
the same patterns of results with only minor degradations in
classification accuracy. However, we are unable to include
these results due to space constraints. Thus, our prelim-
inary experiments suggest that online learning is a viable
alternative for handling very large training sets using clicks,
and a fruitful area for future work.

4. RELATED WORK
Research in online advertising is rapidly growing. Web

advertising presents several engineering and modeling chal-



CM1 CM2 SS
Feature Depth ρ Feature Depth ρ Feature Depth ρ

COS(title)wmean 100 -0.70 χ2
wmean 10 -0.38 H(class) 10 0.34

COS(title)wmean 50 -0.70 χ2
mean 10 -0.37 H(class) 25 0.32

COS(bid)wmean 50 -0.70 COS(title)wmean 100 -0.37 COS(title)mean 5 -0.31
COS(bid)mean 25 -0.70 COS(title)wmean 50 -0.36 H(class) 5 0.31

COS(whole)min 10 -0.69 χ2
mean 5 -0.36 COS(title)wmean 5 -0.31

COS(bid)wmean 100 -0.69 χ2
wmean 5 -0.35 COS(title)mean 10 -0.30

COS(title)mean 25 -0.69 COS(title)mean 50 -0.35 COS(title)wmean 10 -0.30
COS(bid)wmean 25 -0.69 χ2

wmean 25 -0.35 H(class) 50 0.29
COS(title)wmean 25 -0.69 COS(title)mean 100 -0.35 CLARITY (desc) 100 -0.29
COS(whole)mean 10 -0.68 χ2

wmean 50 -0.35 COS(desc)wmean 5 -0.29

Table 4: The ten features that correlate the strongest with the average ad quality scores. For each feature,
the feature type, depth, and correlation (ρ) are given. Values reported are Spearman rank correlations. All
correlations are statistically significant (i.e., ρ 6= 0) at the p < 0.05 level.

lenges and has generated research on different topics, such
as global architecture design choices [2], the microeconomics
factors involved in ranking [13], and the evaluation of the
effectiveness of ad placing systems; e.g., by analyzing click-
through rates [14] or individuals’ awareness beyond con-
scious response [28].

To a large extent sponsored search can be framed as tra-
ditional document retrieval, where the ads are the “docu-
ments” to be retrieved given a query. Thus, one way of ap-
proaching content match is to represent a Web page as a set
of keywords in order to frame content match as a sponsored
search problem. From this perspective, Carrasco et al. [7]
proposed clustering of bi-partite advertiser-keyword graphs
for keyword suggestion and identifying groups of advertisers,
while Yih et al. [27] proposed a system for keyword extrac-
tion from content pages for the task of Web advertising.

In general, the effectiveness of a Web ad is strongly af-
fected by the level of congruency between the ad and the
context. One of the main problems in matching ads with
queries or Web pages is that ads contain very little text. In
order to alleviate this problem, also called the impedance

coupling problem, Ribeiro-Neto et al. [24] proposed to gen-
erate an augmented representation of the target page by
means of a Bayesian model built over several additional Web
pages. Broder et al. [3] proposed a different solution to this
problem which aims at improving simple string matching by
taking into account topical proximity by using a semantic
taxonomy. Ciaramita et al. [10] use statistical correlations
between the terms in ads and the terms in the target page,
in a machine-learned ranking framework. In this work terms
were associated if they had a high correlation in an external
corpus, such as a query log, or the Web at large. Murdock et

al. [23] use machine translation scores in a machine-learned
ranking function to improve matching between ads and text.
Lacerda et al. [18] focused on the selection of good ranking
functions for ads matching and use a genetic programming
algorithm to select a ranking function – a non-linear com-
bination of traditional IR measures – which maximizes the
average precision on the training data.

Predicting the quality of the set of ads for a given query
is related to the problem of predicting the performance of a
query given a collection. If the ads are not relevant, the set
of ads is less likely to be topically cohesive. Many of the fea-
tures used in this paper are similar to metrics developed to
predict query performance. The clarity score was originally

presented as a predictor of a query’s ambiguity with respect
to a given collection [12]. The idea is that the results at the
top of a ranked list for an unambiguous query will be focused
on a single (presumably relevant) topic, whereas for an am-
biguous query, the topic of the results will be much more dif-
fuse. Zhou and Croft [29] propose three metrics to evaluate
a query’s specificity with respect to the corpus. Weighted

information gain weights the information gain between a
sample of the collection statistics, and the top ranked re-
sults, weighted by the rank of the results. Query feedback

measures the similarity between a query generated by sam-
pling from the retrieved documents, and the original query.
First rank change measures how often the top ranked doc-
ument of a series of perturbations of the documents in the
ranked results list, remains the top ranked documents when
the results are re-retrieved.

The task we deal with in this paper is also related to
the work of Jin et al. [15], who investigated the problem of
identifying “sensitive” Web pages in order to improve adver-
tisements placement. A sensitive Web page is one whose
content; e.g., a report about a catastrophic event, might be
inappropriate for placing ads because it might annoy/upset
the user with potential negative effects on the advertiser. Jin
et al. propose to solve this issue using an appropriate topical
taxonomy in which each node, in addition to a topic label, is
associated also with a binary “sensitive/non-sensitive” label.
A training corpus of Web pages labeled according to the tax-
onomy is created, thus a classifier can be trained to identify
sensitive pages by classifying Web pages into the taxonomy.
Jin et al. show that in this way the sensitive classification
task with an accuracy around 80%.

However, our perspective differs from that of Jin et al.

in that our goal is not to decide whether to show an ad
based on the sensitive aspects of the page. We address a
different problem, that of deciding if ads should be displayed
based on individual ad relevance (thresholding approach) or
their aggregate quality (SVM approach) in order to minimize
the risk of demanding the user’s attention with respect to
inappropriate information.

5. CONCLUSIONS
In this paper, we described two methods for deciding whe-

ther to show ads in response to a query (sponsored search) or
a target Web page (content match). We described and mo-
tivated the problem and explained how it differs from the



problem of ranking ads. The thresholding approach used
a simple global score threshold to determine if ads, indi-
vidually, should be shown or not. Our machine learning
approach, which was based on learning an SVM swing/no-
swing model, made use of a wide range of features, including
query/ad similarity features and topical cohesiveness fea-
tures, to analyze the candidate set of ads as a whole.

Our experimental results showed that the SVM model is
capable of achieving good swing/no swing prediction accu-
racy on content match and sponsored search data sets, es-
pecially when a greedy feature selection strategy was used.
Furthermore, it was observed that both the thresholding and
SVM model could significantly improve relevance over a sys-
tem that always showed ads. Overall, the SVM approach
tended to achieve better results for content match, whereas
the thresholding approach was more effective for sponsored
search data. Additionally, we analyzed how well the SVM
features correlated with ad set relevance and showed that co-
sine similarity and the entropy of the semantic classes from
the top ranked ads are strong predictors of ad set quality.

There are several interesting avenues for future investi-
gation and work. One possible future direction is to de-
velop better features, especially for the sponsored search
case when the query has such a sparse representation. It
may also be worthwhile to move from a binary classifica-
tion model to a more fine-grained type of classification or
regression model. One of the most important yet difficult,
future directions is to build a more appropriate cost function
that incorporates aspects other than just relevance. Such a
cost function would have to take into account user fatigue,
ad appropriateness, click-through rates, expected revenue,
among many other complex variables. Finally, our model is
very general, and even though we only applied it to online
advertising, there is no reason why a similar model could
not also be applied to other tasks, such as ad hoc retrieval
or web search.
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