UML-F: A Modeling Language for
Object-Oriented Frameworks

Marcus Fontoural, Wolfgang Pre€?, and Bernhard Rumpe?

! Department of Computer Science, Princeton University
35 Olden Stred, Princeton, NJ 085442087, U.S.A
mfontoura@acm.org
2 C. Dopper Lab for Software Reseach, University of Constance
D-78457Constance, Germany
pree@acm.org
3 Software and Systems Engineaing, Munich University of Techndogy,
D-80290Munich, Germany

rumpe@acm.org

Abstract. The paper presents the esential feaures of a new member of the
UML language family that suppats working with oljed-oriented frameworks.
This UML extension, cdled UML-F, alows the eplicit representation o
framework variation pants. The paper discusses me of the relevant aspeds of
UML-F, which is based onstandard UML extension mechanisms. A case study
shows how it can be used to assst framework development. A discusson o
additional tools for automating framework implementation and instantiation
rounds out the paper.

1 Introduction

Objed-oriented (OO) frameworks and product line achitedures have become
popuar in the software industry during the 1990Gs. Numerous frameworks have been
developed in industry and academia for various domains, including gaphicd user
interfaces (e.g. Java's Swing and aher Java standard libraries, Microsoft's MFC),
graph-based editors (HotDraw, Stingray's Objedive Views), business applications
(IBM's San Francisco), network servers (Java's Jkeves), just to mention a few. When
combined with comporents, frameworks provide the most promising current
techndogy suppating large-scde reuse [16].

A framework is a mlledion d several fully or partially implemented comporents
with largely predefined cooperation petterns between them. A framework implements
the software achitedure for afamily of applicaions with similar charaderistics [26],
which are derived by spedali zaion through appli caiion-spedfic code. Hence, some
of the framework comporents are designed to be replace#le. These @mmporents are
cdled variation pants or hot-spats [27] of the framework. An applicaion based on
such aframework nat only reusesits urce @de, but more important, its architecure
design. This amourts to a standardization o the gplicaion structure and allows a
significant reduction o the size and complexity of the source mde that has to be
written by developers who adapt aframework.

Recent standardizaion efforts of the Unified Modeling Language (UML) [32]
offer a dhance to harness UML as notational basis for framework development
projeds. UML is amulti-purpose language with many naational constructs, however,
the aurrent standard UML does not provide gpropriate @nstructs to model
frameworks. The nstructs provided by standard UML are not enough to assst
framework development, as will be discussed duing the rest of this paper. There is
no indicaion in UML design dagrams what are the variation pants and what are
their instantiation constraints. Fortunately, UML provides extension mechanisms that
allow usto define gpropriate labels and markings for the UML model elements.

This paper describes how to explicitly model framework variation pantsin UML
diagrams to describe the dlowed structure and behavior of variation pants. For this
purpose, a number of extensions of standard UML are introduced. The extensions
have been defined mainly by applying the UML built-in extensibility mechanisms.
These extensions form abasisfor anew UML profile[7, 33, 35], espedally useful for
asssting framework development. This new profileis cdled UML-F.

The main gaal of this paper is to introduce some key elements of UML-F and to
demonstrate their usefulness It would be beyond the scope of this paper to introduce
the whole set of UML-F extensions. One of the main gaals of defining UML-F wasto
try to use asmall set of extensions that capture the semantics of the most common
kinds of variation pantsin OO frameworks. In this way the designer can profit from
his or hers previous experiencewith UML and lean just a few new constructs to ded
with frameworks. This paper describes how the extensions have been defined
allowing ahers extensions that ded with new kinds of variation pantsto be added to
UML-F if needed. The aiurrent version d UML-F was refined based on the
experiences of anumber of projeds[11]. These experiences have shown hov UML-F
can asdst the framework development and instantiation adivities to reduce
development costs and at the same time increase the resulting quality of the delivered
prodicts. This paper presents a condensed version d a red-applicaion case study to
ill ustrate the benefits of UML-F and its suppating toals.

The rest of this paper is organized as follows: Sedion 2 odlines the UML
extensions and dscusses how they can be used to explicitly represent framework
variation pants. It aso shows how the extensions alow for the development of
suppating toadls that can asdst framework development and instantiation. Sedion 3
describes a cae study o red application d UML-F, ill ustrating its benefits. Sedion 4
discuses ome related work. Sedion 5 concludes the paper and sketches our future
reseach diredions.

2 TheProposed UML Extensions

This <ction introduces UML-F through an example. It summarizes the new
extensions and presents a general description d their semantics. It also presents a
description d the UML extensibility mechanisms and hav they have been applied in
the definition & UML-F. A description o tods that use UML-F design descriptions
to automate framework development and instantiationis also presented.

2.1 Motivating Example

Figure 1 shows a student subsystem of a web-based educaion framework [12] in
plain UML, where (a) represents a static view of the system (UML classdiagram) and
(b) provides a dynamic view (UML-like sequence diagram). The dynamic view
ill ustrates the interadion between an instance of ead of the two classs.

The showCourse() method is the one responsible for controlling the gplication
flow: it cdls seledCourse(), which allows the student to seled the desired course,
tipOfTheDay(), which shows a start-up tip, and finally showContent() to present the
content of the seleded course.

Method seledCourse() is the one resporsible for seleding the curse the student
wants to attend. It is a variation pant sinceit can have different implementations in
diff erent web-based appli caions creaed within the framework. Diff erent examples of
common course seledion mechanisms include: requiring a student login, showing the
entire list of available aurses or just the ones related to the student major, showing a
course preview, and so on There ae numerous passhiliti es that depend on the
framework use.

ShowCourse SdlectCourse aShowCourse aSelectCourse
select
o showCourse()
+showCourse() i +selectCourse() selectCourss()
+selectCourse() selectCourse()
+ipOfTheDay(),
+showContent() \\ tipOf TheDay()

showContent()

select.selectCourse()

€) (b)

Figure 1. UML representation d aframework web-based framework.

Figure 1 shows seledCourse() as an abstrad method d an abstrad class
SeledCourse. During framework instantiation, the framework users would have to
crede subclases of SeledCourse and then provide a oncrete implementation o the
seledCourse() method The problem with this representation is that there is no
indication that seledCourse() isavariation pant in the design dagrams. Thereis also
no indicaion o how it shoud be instantiated. Althoughthe name of the astrad
method seledCourse() is italicized this notation is not an indicaion o a variation
point, rather it indicaes an abstrad method which dces not necessarily have to be a
variation pant.

Method tipOfTheDay() is also a framework variation padnt. The reason is that
some goplicaions creded from the framework might want to show tips while others
will not do so. The framework shoud provide only the methods and information that
are useful for al the possble instantiated applicaions and the extra functionality
shoud be provided only in framework instances. Althoughthis may seean a strong
statement, it isthe ided situation. The inclusion o methodk like tipOfTheDay() could

lead to a complex interfacefor ShavCourse, with many methods that would na be
needed by several framework instances. A good asign pinciple in designing a
framework its to try to kee it smple; extra functionality can aways be placea in
comporent libraries.

The Actor classhierarchy is used to let new types of adors be defined depending
on the requirements of a given framework instance The default ador types are
students, teaders, and administrators, however, new types may be needed such as
librarians, and seaetaries. This means that applicdions creaed from the framework
always have & least threekinds of adors, students, teaders, and administrators, but
several other ador types may be defined depending on the gplicdion spedfic
requirements. This design structure is presented in Figure 2.

Actor

+getLogin()
+getPasswvord()

AN

Student Teacher Administrator

Figure 2. Actor hierarchy.

The Actor class hierarchy also represents a variation pant, since it allows the
definition d new classes to fulfill the goplicaion spedfic requirements. However,
this is not properly indicaed in the UML diagram presented in Figure 2. The
framework developer shoud be le to indicae the variation pants in class
hierarchies to fadlit ate the job d the framework user during the instantiation process
Fortunately, UML provides a anstraint cdled Incomplete in its gandard set of
congtraints. Incomplete indicaes that new clases may be alded to a given
generali zation relationship and was adopted as part of UML-F, aswill be described in
subsedion 23.

2.2 UML Extensbility Mechanisms

UML provides threelanguage extension mechanisms: stereotypes, tagged values, and
constraints. Stereotypes allow the definition o extensions to the UML vocabulary,
denoted by «stereotype-name». Each model element (e.g. a dassor a relationship)
can have astereotype atached. In this case, its meaning is pedalized in a particular
way suited for the target architecure or applicaion damain. A number of posshle
uses of stereotypes have been classfied in [2], but stereotypes are still a rather new
concept and still subjed of ongdngresearch [7].

Tagged values are used to extend the properties of a modeling element with a
cetain kind d information. For example, a version nunber or certain tod spedfic
information may be dtached to a modeling element. A tagged value is basicdly apair
consisting d a name (the tag) and the associated value, written as “{tag=value}”.
Both tag and value ae usudly strings only, althoughthe value may have aspedal
interpretation, such as numbers or the Boolean values. In case of tags with Boodean
values, UML 1.3 dlows usto write “{tag}” as sortcut for “{tag=TRUE}". Thisleads
to the fancy situation that occasionally concepts a stereotype, e.g. «exensible», and a
tag, e.g. {exensible}, could be used for the same purpose. Since model elements can
only have one stereotype, but an urlimited number of tagged values, it is often better
to use tagged values in this kind o situation. They provide more flexibility, e.g.
fredng ws of defining a new stereotype for eat combination d tags that may be
attached to amodel element.

In addition to the mentioned two UML extenson mecdhanisms, there exist
constraints. Constraints may be used to detail how a UML element may be treaed.
However, like the other two, constraints have arather we&k semantics and therefore
can be used (and misused) in a powerful way. Constraints are today usually given
informally, or by a buzzword only. The {incomplete} constraint (Figure 3) could also
be defined astagged value.

We exped that this mismatch amongthe extensibility medanisms be improved in
future UML versions. D’ Souza, Sane, and Birchenoughsuggest that al threekinds of
extensions foud be stereotypes [7]. We ague in favor of this unification, but we
will retain the flexibility of tags and therefore will use tagged valuesfor all purposes.

2.3 UML-F Extensions

This subsedion introduces UML-F ill ustrating its appli cation to model the web-based
educaion framework [12]. Figure 3 models part of the framework representing and
classfying the variation pants explicitly. The variation pants are modeled by a
number of tagged values with values of Boolean type to extend the UML class
definitions.

In this example the method seleaCourse() is marked with the tagged value
{variable} to indicate that its implementation may vary depending onthe framework
instantiation. The tagged value {variable} has the purpose to show the framework
user that seledCourse() must be implemented with applicaion spedfic behavior for
ead framework instance Methods marked with {variable} are referred to as variable
methods.

In contrast to the previous tagged value, {extensible} is applied to classs. In this
example {extensible} is attached to the ShavCourse class indicaing that its interface
may be extended during the framework instantiation byadding rew functiondlity, like
methods such as tipOfTheDay(). Please note that extensionis optional, but not a must.

An important point here is that the diagram shown in Figure 3 is a result of a
design adivity, and therefore may implemented in several different ways. The fad
that a dassis marked as {extensible} tells us that its implementation will have to
allow for the extension o itsinterface since agiven framework instance may want to

do so. However, it does not mean that the new methods have to be alded dredly to
the dass The same holds for variable methods: the changes may be defined without
changing the method dredly, but by the adtion o new classes that provide
appropriate implementations for the method Sedion 3 dscuses ome
implementation techniques that may be gplied to model variable methods and
extensible dass.

ShowCourse Actor

{for all new methody | - {extensible, dyramic} {static}
fSeledtedCourse = +showCourse() +getlogin()
fSelededCourse@pre)
+seledCourse() { variable, +getPasswordy()
dyramic}
%{ incomplete}

+showContent()
| |

Student Teader Administrator { appl-class}
Librarian

Figure 3. UML-F extended classdiagram.

Figure 3 uses the tag {incomplete} to indicae athird kind d variation pant: an
exensible interface {Incomplete} is applied to a generali zation relationship, allowing
new subclasses to be defined by framework instances. In this example it indicates that
new subclasses of Actor may be provided to fulfill the requirements of applicaions
creaed from the framework. Please note that {incomplete} is already provided by the
UML asa mnstraint, with exadly the same meaning used here.

The tag {app-clasg is used to indicae aplacéndder in the framework structure
where apgication spedfic dasss may be or have drealy been added. It
complements the definition d extensible interfaces: the generalization relationship
between an extensible interface &d an applicaion classis aways {incomplete}. Class
Librarian is an example of an application class The {incomplete} tag alows the
framework user to creae a much applicdion classes from a given extensible
interfaceduring framework instantiation as needed. In contrast to the other two kinds
of variation pdnts, extensible interfaces have a dired mapping from design to
implementation since arrent OO programming languages provide @nstructs for
modeling generali zaion relationships diredly.

Two other Boolean value tags, cdled {dynamic} and {static}, complement the
variation padnt definition by indicaing whether runtime instantiation is required.
Eacdh variation pant can be marked either by the {dynamic} or by the {static} tag (but
not both). Variable methods are instantiated by pgroviding the methodimplementation.
Extensble dasss are instantiated by the adition d new methods. Extensible
interfaces are instantiated by the aeaion o new applicaion classes. Interpreted
langueges, such as Smalltalk and CLOS, give full suppat for runtime, or {dynamic},
instantiation. Java off ers dynamic dassloading and refledion that also can be used to
allow dynamic instantiation d variation pants. In the example shown in Figure 3 the
tag {dynamic} is used bhecause it is a user requirement to have dynamic

reconfiguration for the variation pants that ded with course exhibition. The tag
{static} is used for the Actor extensible interfacesince new ador types do nd need to
be defined duing runtime. The tag {dynamic} implies that the implementation hes
suppat for runtime instantiation for the marked element. However, such a runtime
instantiation must not necessarily happen.

The note dtadhed to the ShavCourse extensible dassis an OCL [25, 33, 35
formula that defines that the dassattribute fSelededCourse shall not be changed by
any o the new methods that may be alded to the ShavCourse extensible dassduring
framework instantiation. This kind d restrictions over variation pants is cdled
instantiation restrictions. To be ale to describe cetain OCL constraints for methods
that have neither been introduced na named yet the tag {for all new methods} is used,
indicating that this constraint isto hdd for all new methods. Thiskind d tag strondy
enhances the power of description d the designlanguage, as it allows us to talk abou
methods that have not even been named yet.

Althoughit is beyondthe scope of this paper, Figure 4 shows a sequence diagram
that can be used to limit the posdble behavior of a variation pdnt. The sequence
diagram shows the main interadion pettern for a student seledinga curse. Asit may
be dedded by adual implementation, it is optional whether the student has to log in
before he seleds a murse or whether the datais validated. This kind option can be
shown in sequence diagram by using {optiond} tag, which indicates interadions that
are not mandatory. In the aea of sequence diagrams, there ae many more
possbiliti es to apply tags of this kind for similar purposes, such as determining
alternatives, avoidance of interleaving, and so on We exped useful and systematic
sets of tags for sequence diagrams to come up in the nea future. Figure 4 tell s us that
a aoncrete methodthat instantiates seleadCourse() must have the foll owing behavior:

1. It may display alogin web page;
2. It must show aweb page for the seledion d the desired course;

3. It may validate the data by cheding if the login is valid, and whether the student
is assgned to the curse or nat. This gep is optional since there can be murses
that do nd require student identification;

The extended class diagrams and the sequence diagrams complement ead ather
providing a rather useful spedficaion d variation padnts and their instantiation
restrictions. It is important that framework developers provide documentation that
describes what parts of the system shoud be alapted to creae avalid framework
instances. It is quite awmbersome that framework users today often need to browse
the framework code, which generally has complex and large dasshierarchiesto try to
identify the variation pants. The diagrams and dagram extensions introduced in this
example aldress this problem. Sedion 3 will further discuss these ideas, showing
how UML-F can assst framework implementation and instantiation.

ashowCourse students courses

selectCourse() loginPage()
{optional}

selectionPage()

A4
.

vali dateData()
{optional}

Figure 4. Sequencediagram for seledCourse().

2.4 Language Description

Oncethe extensions are defined it is crucial to spedfy their exad meaning. As aside-
note, it isimportant to mention that in most languages (such as natural language, like
English), new vocabulary is explained througha definition using existing vacabulary.
This even hdds for programming languages, like Java, where new clases and
methods are defined using existing clases, methods, and lesic oconstructs.
Unfortunately, UML 1.3 and high likely also UML 1.4 dces nat provide a ¢ea path
for defining the predse semantics of new stereotypes, tagged values, and constraints.
Therefore, this ®dion describes the meanings of our newly introduced elements
mainly informally. A formal approach to charaderize avariant of these dements
based onset theory is presented in [11]. However, this formal definition d UML-F is
not presented here since its usefulness for the communicaion puposes is limited
[33].

This paper demonstrates how UML-F deds with three kinds of variation pants:
variable methods, exensible dasses, and extensible interfaces. Variable methods are
methods that have awell-defined signature, but whose implementation veries for eat
instantiated application. In the example seledCourse() is a variable method
Extensible dasses are dasses that may have their interfaces extended during the
framework instantiation. ShawCourse, for example, may require the adition o new
methods (like tipOfTheDay()) for ead different applicaion. Extensible interfaces are
interfaces or abstrad classes that allow the aedion d concrete subclasses during the
framework instantiation. The instantiation o this last kind d variation pant takes
placethroughthe aedion o new classes, cdled appication classs, which exist only
in framework instances.

It shoud be dea that these threekinds of variation pants have diff erent purposes:
in variable methods the method implementation varies, in extensible dasses the dass
interfacevaries, finadly, in extensible interfaces the types in the system vary (new
application classes may be provided). All three kinds may either be static (do nd
require runtime instantiation) or dynamic (require runtime instantiation).

There ae other kinds of variation pants in framework design, such as variationin
structure (attribute types for example). Coplien describes svera kinds of variability
problems in his multi-paradigm design work [6]. They integrate well into UML-F
using similar principles to the ones described in this paper. To avoid the explosion o
the number of extensions and to keep the presented part of UML-F feasible this paper
focus on the most important kinds of variation pants.

UML diagrams are extended by the tags {variable}, {extensible}, {incomplete},
{app-clasg, {static}, and {dynamic}. The first two represent variable methods and
extensible dasses, respedively. {Satic} and {dynamic} are used to classfy them
regarding to their runtime requirements. The {incomplete} tag (in UML 1.3 known as
constraint) has been adapted to identify extensible interfaces. The keywords
{extensible}, {variable}, and {incomplete}, indicae what are the variation pants and
their exad meaning. The {apd-clasg stereotype indicates placéholders for classes
that are part of instantiated appli cations only.

OCL spedficadions [25, 33, 35 may be written on ndes as in standard UML,
however, they have an enhanced meaning if the notes are dtacdhed to variation pants.
In the cae of variable methods, it meansthat all methodimplementations that may be
defined during instantiation shoud follow the spedfication. If an OCL constraint is
attached to an extensible dass the spedad tag {for all new methods} is useful to
describe the behavior of methods that do nd even have aname yet. Thistag indicates
that the constraint applies to al methods that might be added duing instantiation.
Similarly, if attached to an extensible interface the OCL constraint applies to all
methods that can be overridden or added to ead application class

Let us also mention the tag {optiond}. Here, it extends squence diagrams to
indicae that certain interadion petterns are not obliged to occur. These sequence
diagrams have proven useful to be gplied to al kinds of variation pants. Generally,
they are used to describe apattern behavior that shoud be followed by the variation
point instances, as shown in Figure 4. OCL spedficaions, on the other hand, are
generally used to spedfy invariants that shoud be satisfied by the variation pant
instances, as sown in Figure 3. Thus, sequence diagrams and OCL constraints
complement ead ather in constraining the possble instantiations of variation pants,
and may therefore be used together.

Table 1 summarizes the new UML-F elements and informally defines their
semantics.

2.5 Tool Support

This subsedion shows how toals that benefit from the UML-F design dagrams may
be defined to assst both framework development and instantiation. The toodls
suggested here have aprototypicd implementation tsing PROLOG. However, many
currently available UML case tods give suppat reasoning about tagged values and
could be aapted to work with UML-F. This sibsedion gves information to alow
the astomization d UML case toadls for working with OO frameworks.

Table 1. Summary of the new elements and their meanings

Name of Typeof | Appliesto Description
extension extension | notational
element of
UML
{app-clasg | Bodean | Class Clases that exist only in
Tag framework instances. New

applicaion classes may be defined
during the framework instantiation.

{variable} Bodean | Method The method must be implemented
Tag during the framework instantiation.
{exensible} | Bodean | Class The dassinterface depends on the
Tag framework instantiation: new

methods may be defined to extend
the dassfunctiondlity.

{static} Boodean | Extensible The variation pant does not reguire
Tag Interface runtime instantiation. The missng

VariableMethod | jnformation must be provided at
and Extensible

compile time.
Class
{dynamic} Bodean | Extensible The variation pant requires
Tag Interface runtime instantiation. The missng

VariableMethod | jnformation may be provided orly
and Extensible during runtime.

Class
{incomplete} | Bodean | Generdizaion New subclasses may be alded in
Tag and Redizaion | this generalization a redization
relationship.

{for all new | Bodean | OCL Constraint | Indicaes that the OCL constraint is
methods} Tag meant to hdd for al newly

introduced methods.
{optiond} Bodean | Events Indicates that a given event is
Tag optional. It is useful for spedfying

a template behavior that shoud be
followed by the instantited
variation pant.

Assisting Framework Development. Standard OO design languages do nd provide
constructs for representing flexibility and variability requirements. UML-F addresses
this problem representing veriation pants as first-class citizens thus making the
framework intentions more explicit. The new language dements are not concerned
with how to implement the variability and extensibility aspeds of the framework, but
focus on representation at design level. Consequently, the diagrams are more éstrad
(and more mncise) than standard OO diagrams. Unfortunately some of the new
design elements canna be diredly mapped into existing OO programming languages.

Extensible interfaces can be direaly implemented through standard inheritance
Although dymamic extensible interfaces are not suppated in compil ed languages such
as C++, they may be simulated through dyramic linking (Microsoft Windows DLLs,

for example). Variable methods and extensible dasses, on the other hand, canna be
diredly implemented, since standard OO programming languages do nd provide
appropriate cnstructs to model them.

To bridge this design-implementation gap, severa techniques may be used. Design
patterns are apossble solution, since several patterns provide solutions for flexibility
and extensibility problems and are based orly on extensible interfaces. Thus, design
patterns may be used to transform variable methods and extensible dasss into
extensible interfacevariation pants. Figure 5 ill ustrates the use of the Strategy design
pattern [15] to implement this mapping. Classes ShavCourse and SeledStrategy are
identified with the tags {separation, template} and {separation, hodk} to indicae the
rolesthey play in the pattern. Strategy is based onthe Separation meta-pattern [28], in
which a template dassis resporsible for invoking the variable method in the hook
class The use of tags that indicae meta-pattern roles complement the UML-F
description for variation pants implemented by cesign petterns, further clarifying the
design. A similar solution for identifying design dagrams with pattern roles is
described in [30].

ShowCourse SelectSrategy
{ separation, hook}
+showCourse() ﬂ +showCourse() +select() {dynamic}
+selectCourse()
+selectCourse()
{variable,
dynamic} +showContent()
+showContent() l
{incomplete}
Framework
Framework , , ConcreteSelect
design implementation {appl-class)

+select()

Figure5. Transforming variable methods into extensioninterfacevariation pants.

The transformations used to map variable methods and extensible dasses into
implementation level constructs must be behavior-preserving, since the system
functionality is independent of the implementation technique used to model the
variation pants.

A code generation todl can be used to automate design to implementation trans-
formations. It is resporsible for mapping the new design elements of UML-F into
appropriate implementation level structures. More spedficdly, it is responsible for
eliminating the variable methods and extensible dasses from the design. This
mapping is based on meta-artifads that describe the transformations. These meta-
artifads are cdled implementation models. It is an imperative to allow the definition
of new implementation models for variation pants, so that different styles of
trandlation are possble.

The transformation ill ustrated in Figure 5 is an example of a mapping suppated by
the mde generation tool. The implementation model that supparts this transformation
describes how dynamic variable methods are modeled by the Strategy design pettern.
Figure 6 ill ustrates the mde for this implementation model, which seaches for all
variable methods in the design dagrams and appli es Strategy to them.

The implementation transformations (ill ustrated in Figure 6) preserve the design
structure described in Projed and crede NewProjed to store the generated
framework. All the design elements that are not transformed, the kernel elements and
the etensible interfaces, are mpied from Projed to NewProjed. The variable
methods and extensible dasss are transformed in the way described by the seleced
implementation model.

applyS trategy(Projec t, NewProject):- « Searches for
[..] .
forall (variab | eMethod (Projec t, Class , Method,), variable
strate gy(Projec t, NewProject , Class , Method)), methods

(-]

(Proj NewPror o Metho d) Uses strategy
strate gy(Projec t, NewProject , Class , Method): <€——onn—
concat (Method, 'Stra tegy' , NewClass), to model them

create Extensiblelnt erface (NewProj ect , NewClass, dynami c),
create Method (NewProj ect , NewClass, Method, publi c, none, abstr act),
create Aggregation (NewProject, Class , NewClass, strat egy),

Figure 6. Strategy implementation model.

Each valid implementation model artifad has to define a least four transformations:
(static and dyramic) variable methods and (static and dyramic) extensible dasses.
Examples of implementation models that have been succesully used to assst
framework implementation include different combinations of design petterns, meta-
programming [21], asped-oriented programming (AOP) [20], and subjed-oriented
programming (SOP) [17], as described in [11]. The cae study sedion also describes
some other mappings.

The seledion d the most appropriate technique to be used model ead variation
point is a aedive task and canna be cmpletely automated. However, UML-F
diagrams and the set of implementation models avail able for ead kind d variation
point may help the framework designer to narrow his or hers sach for appropriate
implementations. Moreover, the @de generation tod automaticdly applies the
transformation orce the implementation model has been seleded, making the
mapping from design to implementation lesserror prone.

Some UML case toadls, such as Rational Rose (http://www.rational.com), all ow the
customization d how code is generated from the design dagrams. Therefore, it is
possble to spedfy how code shoud be generated for the new UML-F elements.

Assisting Framework I nstantiation. During the framework instantiation, applicaion
clases must be provided to complete the definition o the extensible interface
variation pants (at this point this is the only kind o variation pants in the system,
given that the other two have dready been eliminated during implementation). Figure
7 illustrates a framework instantiation. After the instantiation al extensible interfaces

disappea from the design, since the {incomplete} generdizaions becme
“complete.” In this example the variation pant was instantiated by just one cncrete
applicaion class SmpleSeled, which is marked by the {c-hodk} tag to indicate that it
plays the role of a mncrete hook In a general case, however, severa applicaion
classes may be provided for ead extensible interface

An instantiation tool can be used to asdst the gplicaion developer to crede
applicaions from the framework. The tod knows what are the exad procedures to
instantiate extensible interfaces: it has to crede a new subclass ask for the
implementation o ead of the interfacemethods, and ask for the definition (signature
and implementation) for each new method that might be alded, if any. The todl
prompts the gplication developer abou all the required information to complete the
missng information for ead variation pant in the framework structure.

Note that the tags that indicae the meta pattern roles are useful just for enhancing
the design uncbrstating, and are not procesed by the implementation and
instantiation todls.

Depending onthe implementation model seleded, diff erent instantiation tasks may
be required for the same variation pant, as will be illustrated in Sedion 3 UML-F
descriptions can be seen as dructured cookbools [22] that predsely inform were
applicaion spedfic code shoud be alded. The instantiation tod is a wizard that
asdsts the exeaution d these mokbools. Once ajain the @de generation part of
standard UML case tools may be adapted to mark the pointsin which code shoud be
added by wsing the information provided by the extensible interfacetags.

3 Case Study

This sdion dtails the implementation and instantiation o the web-educaion
framework modeled in Figure 3. It starts from the UML-F spedficaion, derives the
final framework implementation, and shows how it may be instantiated. The benefits
of UML-F andits suppating tods are discussed throughou the example.

3.1 Framework Implementation

Let us consider that the only variation pants of the framework are the ones presented
in Figure 3. Since dl the variation pants have been identified and marked in the
UML-F design dagrams, the next step is to provide implementation solutions to
model them. As discussed before, extensible interfaces and the framework kernel
(modeled ony by standard UML constructs) have straightforward mappings into OO
programming languages. Therefore the framework designer focus during the
implementation phese shoud be on hov to model variable methods and extensible
classs. In this example two variation padnts have to be examined: the seledCourse()
variable method and the ShavCourse extensible dass

SelectStrategy
{ separation, hook}

+showCourse() +select() { dynamic}
+selectCourse()

+showContent()

N\

{incomplete}
Framework
. . ConcreteSelect
implementation {appl-class
+seledt()
ShowCourse SelectSrategy

{ separation, template] {'separation, hook}

+showCourse() 1| +sdlect()

+selectCourse()
+showContent()

N\

Application

SimpleSel ect
{'separation, c-hook}

+seled()

Figure 7. Instantiation example.

The designer has to seled an appropriate technique based on hs or hers experience If
a suppating tod with a set of implementation models is avail able, the analysis of
these models may fadlitate this task. One of the models available in the de
generation tod is the use of the Strategy design pettern [15] to implement dynamic
variable methods and a dlightly changed version d the Separation meta-pattern [28],
which alows the invocaion zero o more hook methods, to implement dynamic
extensible dasss. Since the transformations are automaticdly applied by the tool let
us try this solution and seewhat happens. The resulting designis srown in Figure 8.

This slution worked qute well. The solution for extending the ShavCourse
interface dows the aldition o new methods withou diredly changing the dass
interface It alows an instance gplicaionto define zeo or more methods that will be
invoked before the adual content of the curse is displayed, and that is the expeded
behavior. An important point to make is that the instantiation restriction spedfied by
the OCL constraint in Figure 3 is automaticdly asaured by this lution, since the
new methods do nd have acces to the fSeledCourse attribute that is private to
ShavCourse.

In the cae of seledCourse(), however, the Strategy solution daes not guarantee
that the behavior spedfied by the sequence diagram in Figure 4 will be foll owed.
Strategy is a white-box pettern since it all ows the definition d any behavior for the
hook method The verification d thiskind d instantiation restrictions is nat an easy
task (and is generaly an undceadable one), however there ae some implementation
solutions that may be more restrictive, or more bladk-box.

ExtensionMethods ShowCourse SelectStrategy
{'separation, hook} || extend { separation, template} select | {separation, hook}
+void op) {dyramic}| " fSelectedCourse L +int select()
+void showCourse() {dynamic}
/| +int selectCourse()

l /| +showCo ntent(int) l

{incomplete} / {incomplete}

ConcreteExtension ConcreteSelect
{appl-class) fSelectedCourse = selectCourse(); {appl-class}

forall (extend) { extend.op();}
+void op) showContent(f SelectedCourse); +int select()

Figure 8. A pattern-based implementation.

A solution that might be more gpropriate for seledCourse() is the definition o a
meta-objed protocol (MOP) [18]. MOPs all ow meta-level conceptsto be dynamicaly
defined in terms of base-level ones. Thus, the use of MOP may be agoodalternative
since it is a more restrictive solution than the Strategy pattern: the possble
instantiations are just the ones defined by the protocol. Figure 9 ill ustrates the use of
MORP for this example. Whenever instances of the SeledMOP classare aeded a set
of Booean parameters that complete the variation pant behavior have to be
provided: login (TRUE if login isrequired), major (TRUE if a student can attend orly
the courses related to his or hers major), and validate (TRUE if it is required that the
student have to be asdgned to be ale to attend the wurse). The mmbination o these
parameters provides all the passhble instantiations allowed by the MOP. Note that this
solution is much more restrictive than the Strategy solution, but it has the advantage
that it always preserves the instantiation restrictions gpedfied in the sequence
diagram.

ExtensionMethods ShowCourse
{ separation, hook | extend { separation, template} seled SelectMoOP
*
+void op) {dynamic}] -fSelededCourse ! + void ssledMOP(Boodlean
- login, Boolean major, Bodlean
+void showCourse() validate)
+int seledCourse() +int sdeat()
l +showContent(int) AN
{incomplete} b
: e
ComreteETtenson fSelectedCourse = seledCourse(l, m, v);
{appi-class} forall (extend) { extend.of):}
+void op) showContent(fSelededCourse);

Figure 9. Using MOP to model seledCourse().

The implementation d MOPs canna be automated by the cde generationtodl, since
eath MOP is pedfic for a given variation pant. However, the UML-F instantiation
restrictions provide agood da@umentation that can be used by the MOP developers.
In this example the parameters login and validate can be diredly derived from Figure
4. In general MOPs may require objets more mmplex than Boolean ores as
parameters and refledion may be required in their implementation.

Note that the runtime wnstraints {static} and {dynamic} play a aucial role during
framework development. In this example, if the variation padnts were defined as
{static} a much simpler design solution based on the Unificaion meta-pattern [28]
could be used for both cases. In Unificaion-based petterns the template and hook
methods belong to the same dass lealing to a less flexible but simpler design
solution.

3.2 Framework Instantiation

During instantiation the variation pdnts missng information have to be filled with
applicaion spedfic code. Since the variable methods and extensible dasses have
been eliminated duing implementation, only extensible dasses are left to be
instantiated by the goplication developers.

Toodls sich as the instantiation tod may fadlit ate this task by identifying all the
points in which code has to be written. However, even if no tods are available, the
UML-F diagrams make this task very straightforward since dl the extensible
interfaces and their correspondng instantiation restrictions are marked in the
diagrams.

Figure 10 shows an example of application creaed from the framework defined in
Figure 8. Applicaion classes are provided to complete the definition o the two
variation pants. Note that if the MOP solution hed been adopted the seleadCourse()
variation pant would nd require new application classes, shce MOPs are completely

instantiated duing runtime by parametrization. This illustrates that different
implementation models applied to the same variation pdnt may demand dfferent
instantiation procedures.

ExtensionMethods ShowCourse SeleaStrategy
{separation, hodk} | extend ~_|{ separation, template} seled| {separation, hook}
+void off() {dynamic}| -fSelectedCourse 1| +int sdea()
+void showCourse()
+int seleaCourse()

l +showContent(int) l

TipOfDay Annourcement SimpleSeleat LoginSeledt
{separation, c-hook {separation, c-hook {separation, c-hookt {separation, c-hookt

Figure 10. An applicaion creaed from the framework.

4 Reated Work

This wdion describes ©me of the arrent design techniques used to model
frameworks, and relates them to UML-F. It shows that currently propased constructs
used to represent framework variation pants have not adequately met our
expedations.

Early OO design methods, like OMT [31], aswell asthe aurrrent UML 1.3, provide
a number of diagrams for structure, behavior, and interadion. Different OO design
notations include different artifads, such as the representation d obed
resporsibiliti es as CRC cards [1, 37]. However nore of these atifads has explicit
suppat for the representation o the variation pants of a framework.

UML represents design patterns as coll aborations (or mechanisms) and provides a
way of modeling framework adaptation through the binding stereotype [32].
However, framework instantiation wsualy is more complex than simply assgning
concrete dases to roles: variation pdnts might have interdependencies, might be
optional, and so on Catalysis uses the UML notation and proposes a design method
based on frameworks and comporents [8]. Frameworks are treaed in Catalysis as
collaborations that allow substitution. However, as discussd in the paper, OO
applicaion frameworks may require different instantiation mecdanisms. Therefore,
Catalysis and standard UML only partly addressthe problems identified in this paper
dueto aladk of suppat for explicit marking variation pants and their semantics.

Design petterns [4, 15, 36] are usualy described using standard OO diagrams.
Since various design petterns provide solutions to variability and extensibility
problems[15] they define a @mmon vacabulary to talk about these ancepts[36] and
may enhance the understanding d framework designs. Sometimes design pettern
names are used as part of the dass names alowing the framework user to identify
variation pants throughthe used names. However, in a typicd framework design a

single variation pant class can participate in various design petterns. Then the
approach of using design pettern names as class names beames obfuscaed. One
possble solution for this problem is the use of role-based modeling technique, as
shownin [30].

Meta-level programming [21], which can be seen as an architecura pattern [4],
provides a good asign solution for alowing runtime system remnfiguration.
Therefore, the use of meta-level programming is a useful technique for modeling
variation pants that require runtime instantiation, and (with appropriate cnventions)
it may fadlit ate the identification o variation pantsin the framework structure. The
case study shown in sedion 3 has fiown that both design petterns and meta-level
programming can be used in conjunction with UML-F, during the implementation o
variation pants.

The use of role diagrams to represent objed collaboration is a promising field in
OO design reseach [5]. Riehle and Gross propcse an extension d the OCram
methoddogy [29] to fadlit ate framework design and dacumentation [30]. His work
proposes a solution for an explicit division d the design, highlighting the interadion
of the framework with its clients. The use of roles does smplify the modeling o
patterns that require several objed collaborations and povides a solution for
documenting clases that participate in several design patterns. However, no
digtinction is made between the kernel and variation pant elements. This problem is
handled using cesign petterns: if the framework user knows what patterns were used
to model eat of the variation padnts he or she can have an intuition on hav the
framework shoud be instantiated. On the other hand, if the pattern seledions are not
explicitly represented, the identification o the variation pants becomes again
difficult. Ancther disadvantage of this approach is the solution for modeling
unforeseen extensions propcsed in [30], which may lead to a very tangled design.
Althoughit can be agoodsolution it shoud have amore mncise representation at
design level. This paper has snown how to use roles to complement the description o
variation pantsimplemented by design petterns.

Contrads [18, 19] and adaptable plug-and-play comporents (APRCs) [24] provide
lingustic constructs for implementing coll aboration-based (or role-based) diagrams
in a straightforward manner. They may be used to implement variation pants snce
they represent instantiation as first-class citizens. However, these @mncepts are still
quite new and their use for implementing frameworks neels further investigation.
Also Lieberherr and the researchers of the Demeter Projed [24] have developed a set
of concepts and todls to help and evaluate OO design that can be used to enhance
framework development.

The Hook todl [13, 14] uses an extended version d UML in which the variation
point classes are represented in gray. This differentiation between kernel and
variation pants helps framework design and instantiation, but it does not solve the
problem completely. Framework designers gill have to provide the solutions for
modeling eat variation padnt withou any tool suppat. A good pant of this
approach is that instantiation constraints are treaed as first-class citizens in the
definition o hooks.

Severa design pattern toadls [3, 9, 10, 23] have been proposed to fadlit ate the
definition d design petterns, to allow the incorporation o patterns into spedfic

projeds, to instantiate design descriptions, and to generate awde. However, they leave
the seledion d the most adequate pattern to model ead variation pant in the hands
of the framework designer. Althoughthis is obviously a aeaive task, if variation
points are modeled during design tods that assst the systematization o the seledion
of the best modeling technique for ead variation pant may be onstructed,
simplifying the job o the framework designer.

5 Conclusions and Future Work

The standardization d the UML modeling language makes it attradive & a design
notation for modeling OO frameworks. This paper shows that UML today lacks
constructs to explicitly represent and classfy framework variation pants and their
instantiation restrictions. The proposed extensions to the UML 1.3 design language
address this problem representing veriation pants through appropriate markings.
They make the framework design more explicit and therefore eaier to understand
and instantiate. The extensions have been defined by applying the UML extension
mechanisms.

Although the extensions described in this paper have been used to model
frameworks siccesSully [11], they are neither complete nor the only ones that may
be gplied to framework development. This paper discusses how to improve UML-F
to provide aditional extensions and a systematic goproach to apply these extensions
to dfferent kinds of UML diagrams. Furthermore, it is of interest to uncerstand that
relationship of UML-F with similar kinds of variahility problems, such as presented
in[6].

The new UML-F elements are not concerned with how to implement the
variability and extensibility aspeds of the framework, but just with howv to
appropriately represent them at the design level. Furthermore, through wse of this
kind o extensions it is more likely that the framework user will not have to gointo
the detailed internals of a framework, being able to use it in a more bladk-box
manner. Consequently, the diagrams give us a more &strad and concise
representation d aframework, when compared to standard OOADM diagrams.

The most important claims of this paper is that frameworks sioud be modeled
throughappropriate design constructs that all ow the representation o variation pants
and their intended behavior. The extended class diagrams and sequence diagrams
fadlit ate the definition o adequate documentation, which may be used to assst the
framework developer in modeling the variation pants and the framework user in
identifying these points during instantiation.

The extensions allow for the definition o suppating tods that may partially
automate the development and instantiation adivities. Appropriate tool assstance
shoud aso lead to a better time-to-market, reduced software wsts, and hgher
software quality.

References

1. D.BdlinandS. Simone, The CRC Card Book, Addison Wesley Longman, 1997.

2. S Berner, M. Glinz, S. Joos, “A Clasdficaion d Stereotypes for Objed-Oriented
Modeling Languages’, UML’99, LNCS 1723 Springer-Verlag, 249264, 1999

3. F. Budinsky, M. Finnie, J. Vlissdes, and P. Yu, “Automatic Code Generation from
Design Patterns’, Objeda Techndogy, 35(2), 1996

4. F. Buschmann, R. Meunier, H. Rohrert, P. Sommerlad, and M. Stal, Pattern-Oriented
Sdtware Architedure: A System of Patterns, JohnWiley & Sons, 1996

5. J Coplien, “Broadening beyond obheds to petterns and aher paradigms’, ACM
Computing Suiveys, 28(4es), 152 1996

6. J. Coplien, Multi-Paradigm Design for C++, Addison-Wedley, 1999

7. D. D'Souza A. Sane, and A. Birchenough “Firgt-class Extensibility for UML —
Padkaging d Profiles, Stereotypes, Patterns’, UML’99, LNCS 1723 Springer-Verlag, 265
277,1999

8. D. D'Souza and A. Wills, Objeds, Comporents, and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1997.

9. A. Eden, J. Gil, and A. Yehuda, “Predse Spedficaion and Automatic Applicaion o
Design Patterns’, ASE' 97, IEEE Rress 1997

10. G. Florijin, M. Meijers, P. van Winsen, “Tod Suppat for Objed-Oriented Patterns’,
ECOOP' 97, LNCS 1241 Springer-Verlag, 472-495, 1997,

11 M. Fontoura, “A Systematic Approach for Framework Development”, Ph.D. Thesis,
Computer Science Department, Portificd Cathadlic University of Rio de Janeiro, Brazl
(PUC-Ri0), 1999

12. M. Fontoura, L. Moura, S. Crespo, and C. Lucena, “ALADIN: An Architedure for
Leaningware Applicaions Design and Instantiation”, Technicd Report MCC34/98,
Computer Science Department, Computer Science Department, Pontificd Cathdlic
University of Rio de Janeiro, Brazl (PUC-Rio), 1998

13. G. Froehlich, H. Hoover, L. Liu, and P. Sorenson, “Hooking into Objed-Oriented
Applicaion Frameworks’, ICSE'97, IEEE Rress 491-501, 1997

14. G. Froehlich, H. Hoowver, L. Liu, and P. Sorenson, “Requirements for a Hooks Tod”,
(http://www.cs.ua berta.cal~softeng/papers/papers.htm).

15. E. Gamma, R. Hem, R. E. Johnson, and J. Vlisddes, Design Patterns, Elements of
Reusable Objed-Oriented Sdtware, Addison-Wesley, 1995

16. D. Hamu and M. Fayad, "Achieving Bottom-Line Improvements with Enterprise
Frameworks', Comnunications of ACM, 41(8), 110113 1998

17. W. Harrison and H. Osser, “Subjed-Oriented Programming (A Critique of Pure
Objeds)”, OOPI.A’'93, ACM Press 411-428 1993

18. R. Helm, |. Holland, and D. Gangopadhyay, “Contrads. Spedfying Behavioral
Composition in Objed-Oriented Systems’, OOPS.A/ECOOP 98, Norman Meyrowitz
(ed.), ACM Press 169-180, 199Q

19. 1. Holland, “The Design and Representation d Objed-Oriented Comporents’, Ph.D.
Dissertation, Computer Science Department, Northeastern University, 1993

20. G. Kiczdes, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin,
“ Asped-Oriented Programming’, ECOOP 96, LNCS 1241220242, 1997.

21. G.Kiczdes, J. des Rivieres, and D. Bobrow, The Art of Meta-objed Protocol, MIT Press
1991

22. G. Krasner and S. Pope, “A Cookbook for Using the Modd-View-Controller User
Interface Paradigm in Smalltalk-80", Journal of Objed-Oriented Programning, 1(3), 26-
49,1988

23. T. Méijler, S. Demeyer, and R. Engel, “Making Design Patterns Explicit in FACE — A
Framework Adaptative Composition Environment”, ESEC'97, LNCS 1301 Springer-
Verlag, 94-111, 1997.

24. M. Mezni and K. Lieberherr, “Adaptative Plug-and-Play Comporents for Evolutionary
Software Development”, OOPS.A’98, ACM Press 97-116, 1998

25. OMG, “OMG Unified Modding Language Spedficaion V.1.3", 1999
(http://www.rational .com/uml).

26. D. Parnas, P. Clements, and D. Weiss “The Moduar Structure of Complex Systems’,
|IEEE Transactions on Sdtware Engineeing, SE-11, 259-266, 1985

27. W. Preg Design Patterns for Objed-Oriented Sdtware Devdopment, Addison-Wedley,
1995

28. W. Pree Framework Patterns, Sigs Management Briefings, 1996

29. T.Reeskaug, P. Wold, and O. Lehne, Working with oljeds, Manning, 1996

30. D. Riehle and T. Gross “Role Modd Based Framework Design and Integration”,
OOPS.A'98, ACM Press 117-133, 1998

31 J Rumbaugh M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Objed-Oriented
Modeling andDesign, Prentice Hall, Englewood Clifs, 1994

32. J. Rumbaugh I. Jambson, and G. Booch, The Unified Modeling Languag Reference
Manud, Addison-Wedley, 1998

33. B. Rumpe, A Note on Smartics, Procealings of Second ECOOP Workshop onPredse
Behaviora Semantics, 1998

34. S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Will's, The Amsterdam
Manifesto on OCL, Technicd Report, Institute for Software Engineaing, Technische
Universitdt Miinchen, 1999

35. S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, A. Will s, Defining UML Family
Members with Prefaces, TOOLS Padfic'99, IEEE Ress 1999

36. J. Vlissdes, Pattern Hatching: Design Patterns Applied, Software Patterns Series,
Addison-Wesley, 1998

37. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Objed-Oriented Sdtware,
PrenticeHall, 1990

