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Abstract

We present a streaming algorithm for evaluating XPath
expressions that use backward axes (parentand ancestor)
and forward axes in a single document-order traversal of an
XML document. Other streaming XPath processors handle
only forward axes. We show through experiments that our
algorithm significantly outperforms (by more than a factor
of two) a traditional non-streaming XPath engine. Further-
more, our algorithm scales better because it retains only
the relevant portions of the input document in memory. Our
engine successfully processes documents over 1GB in size,
whereas the traditional XPath engine degrades consider-
ably in performance for documents over 100 MB in size and
fails to complete for documents of size over 200 MB.

1 Introduction

XPath 1.0 [8], a language for addressing parts of
XML [4] documents, is an integral component of languages
for XML processing such as SQLX [14], XSLT [7] and
XQuery [10]. The performance of implementations of
these languages depends on the efficiency of the under-
lying XPath engine. XPath expressions have also been
used as a general-purpose mechanism for accessing portions
from XML documents, for example, an XPath-based API
is provided in DOM 3 [17] for traversing DOM [12] trees.
XPath expressions have found use in publish-subscribe sys-
tems as a mechanism for specifying content-based subscrip-
tions [1, 5]. Given the central role that XPath plays in the
XML stack, algorithms for improving the performance of
evaluating common XPath expressions are essential.

In many environments, it is natural to treat the data
source as a stream, processing queries on the data source
as it is parsed. Examples include XML filtering sys-
tems [1, 9, 5], Continuous Query Systems [6], and systems
where high-volume XML data sources are integrated in a
federated manner [13]. An XPath engine that operates on
a streaming data source is structured as shown in Figure 1.
An XPath expression is analyzed and represented as an au-
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Figure 1. Streaming XPath processor.

tomaton. The XPath engine consumes events (for example,
SAX events) produced by a parser. For each event, the au-
tomaton may make state transitions, and if necessary, store
the element. At the end of processing the stream (or docu-
ment), the XPath engine returns the list of elements that is
the result of the evaluation of the XPath expression.

Most current XPath engines, for example, the one pro-
vided with Xalan [2], require that an entire document be in
memory before evaluating an XPath expression. For large
documents, this approach may result in unacceptable over-
head. Furthermore, the XPath engine in Xalan may perform
unnecessary traversals of the input document. For example,
consider an expression such as/descendant::x/ancestor::y,
which selects ally ancestors ofx elements in the document.
The Xalan XPath engine evaluates this expression by using
one traversal over the entire document to find all thex ele-
ments, and for eachx element, a visit to each of its ancestors
to find appropriatey elements. As a result, some elements in
the document may be visited more than once. In the worst
case, Xalan’s implementation may take timeO(Dn), where
D denotes the size of the document andn is the number of
steps in the XPath expression [11].

The premise of streaming XPath is that in many in-
stances XPath expressions can be evaluated in one depth-
first, document-order traversal of an XML document. The
benefits of streaming XPath are twofold. First, rather than
storing the entire document in memory, only the portion
of the document relevant to the evaluation of the XPath is
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stored. Second, the algorithm visits each node in the docu-
ment exactly once, avoiding unnecessary traversals.

In this paper, we present theχαoς1 algorithm, which can
evaluate XPath expressions containing both backward (such
asparent andancestor) and forward axes (such aschild and
descendant) in a streaming fashion in time linear in the size
of the document. Other streaming XPath processors, such
as YFilter [9], XTrie [5], and TurboXPath [13] handle only
forward axes.

Central to theχαoς algorithm is the conversion of an
XPath expression into a representation, called thex-dag, in
which all uses of backward axes are converted into forward
constraints — a key step in making streaming XPath pro-
cessing possible. This representation is used to perform the
two major operations of the algorithm: filtering incoming
events to select those that affect the evaluation of the XPath
expression, and recording information in a data structure
called thematching structurewhen parts of the input XPath
expression have been satisfied. These two operations are in-
terleaved so that at the end of processing the document, the
matching structure contains the solution of the evaluation
of the XPath expression. This paper makes the following
significant contributions:

1. A novel streaming algorithm for handling both back-
ward and forward axes, which can be extended to han-
dle all XPath axes. Theχαoς algorithm can handle
both recursive and non-recursive documents.

2. A concise representation of an XPath expression,
called x-dag (Section 3.2) in which all backward con-
straints are converted into forward constraints. The
x-dag is also a convenient representation for intersec-
tions and joins of XPath expressions, which we shall
discuss only briefly in this paper.

3. A data structure called the matching structure (Sec-
tion 4.2) that compactly represents all matchings (Sec-
tion 3.3) of an XPath expression in a document. The
result of evaluating the XPath expression can be com-
puted easily and efficiently from this data structure.

This paper is structured as follows. We first present back-
ground on XPath expressions in Section 2. In Section 3,
we introduce a tree-based representation of XPath expres-
sions, called thex-tree, and explain how it can be converted
into an x-dag. The x-dag is the central data structure of our
algorithm. We also define the semantics of the evaluation
of XPath expressions in terms of the notion ofmatchings
on the x-tree and the x-dag. In Section 4, we present an
overview of our algorithm and describe extensions to our
algorithm in Section 5. Our experimental results are dis-
cussed in Section 6, and finally, we conclude in Section 7.

1χαoς (Xaos, pronounced Chaos) is an acronym for XML Analysis,
Optimization, and Stuff

1.1 Related Work

Our work is most closely related to theXFilter [1], YFil-
ter [9], XTrie [5], and TurboXPath[13] systems, all of
which involve evaluation of XPath/XQuery-based queries
on streaming XML documents. XFilter, YFilter, and XTrie
are XML filtering systems where documents are routed and
filtered based on subscriptions expressed as queries. The
TurboXPath system has been used for XML-enabled data
integration where queries operate over a mixture of locally
stored data in a relational database and data streamed from
external sources. The XFilter system handles simple XPath
location path expressions (path expressions without branch-
ing or predicates) by transforming them into a Determinis-
tic Finite Automaton. The YFilter system is an extension
of XFilter in which a group of simple XPath location path
expressions are combined into a single Nondeterministic Fi-
nite Automaton. Both XTrie and TurboXPath handle tree-
shaped path expressions involving predicates (which are in-
ternally represented as trees called the XTrie and ParseTree
respectively). In addition, TurboXPath can also handle mul-
tiple output nodes. However, all of these systems are lim-
ited to handling location path expressions that only contain
forward axes. Theχαoς system improves upon these sys-
tems by adding the ability to handle both backward (e.g.
parent, ancestor) and forward axes in the context of stream-
ing XML. Our approach also handles multiple output nodes
but we shall discuss it only briefly.

Tozawa and Murata [16] describe a method for convert-
ing an XPath expression into modal logic formulas with past
modalities. They present an algorithm for converting such
formulas into tree automata, which can be used to evalu-
ate XPath expressions on an input document. Their paper
describes a theoretical approach that can handle all XPath
axes. The current status of the implementation of their al-
gorithm is unclear. It would be interesting to compare the
performance of their implementation with that ofχαoς.

Gottlobet al.[11] present an algorithm which is linear in
the size of the document and the XPath expression for a core
subset of XPath similar to the subset considered in this pa-
per. However, their algorithm relies on the input document
being present in memory, and cannot be applied directly to
streaming XPath processing.

TheNiagaraCQ[6] system is a continuous query system
that supports querying of distributed XML datasets using an
XML query language. Continuous queries allow users to re-
ceive new results as they become available. The focus of the
NiagaraCQ project is on exploiting similarities in structure
of queries to share computation across groups of queries,
and use of incremental group optimization and incremen-
tal evaluation techniques. However, the queries that they
focus on involve simple structural pattern matching rather
than XPath/XQuery-based queries thatχαoς supports.

2



2 Background

We describe the tree model of XML documents that is
the basis of the definition of XPath. We then describe the
event stream that drives theχαoς algorithm. Finally, we
present the subset of XPath that we focus on in this paper.

2.1 Tree Model for XML Documents

An XML document can be represented as a tree, whose
nodes represent the structural components of the document
— elements, text, attributes, etc. Parent-child edges in the
tree represent the inclusion of the child component in its
parent element, where the scope of an element is bounded
by its start and end tags. The tree corresponding to an XML
document is rooted at a virtual element,Root, which con-
tains the document element. We will, henceforth, discuss
XML documents in terms of their tree representation;D
represents an XML document, andVD andED denote its
nodes and edges respectively. Figure 2 illustrates the tree
representation of an XML document.

For simplicity of exposition, we focus on elements in
this paper, and ignore attributes, text nodes, etc. The tree,
therefore, consists of the virtual root and the elements of
the document. To avoid confusion between the XML doc-
ument tree and the tree representation of the XPath (de-
scribed later), we useelementsto refer to the nodes of the
XML tree. We assume that the following functions are de-
fined on the elements of an XML document:

• id : VD → Integer: Returns a unique identifier for
each element in a document.

• tag : VD → String: Returns the tag name of the
element.

• level : VD → Integer: Returns the distance of the
element from the root, wherelevel(Root) = 0.

We useTi,l to denote an element withtag = T, id =
i, level = l. For example, the elementX in Figure 2(b)
is denoted byX1,1.

2.2 Event-Based Parsing

An event-based parser, for example, a SAX parser, scans
an XML document, producing events as it recognizes ele-
ment tags and other components of the document. We reg-
ister functions that are invoked by the parser on start and
end element events. Each event conveys the name and level
of the corresponding element. The production of events
is equivalent to that of a depth-first, pre-order traversal of
the document tree, where for each element, a start element
event is generated, then its subtree is processed in depth-
first order, and finally, an end element event is generated.

Table 1. XPath subset addressed in paper.

AbsLocPath := ′/′ RelLocPath
RelLocPath := Step ′/′ RelLocPath | Step
Step := Axis :: NodeTest |

Step ′[′ PredExpr ′]′

PredExpr := RelLocPath and PredExpr |
AbsLocPath and PredExpr |
RelLocPath | AbsLocPath

Axis := ancestor | parent | child |
descendant

NodeTest := String

2.3 XPath

The XPath language defines expressions for addressing
parts of an XML document. We focus onlocation pathex-
pressions which evaluate to a set of elements in the doc-
ument. A location path is a structural pattern composed
of sub-expressions calledStep, joined by the ’/’ character.
Each step consists of anaxis specifier, anodetest, and zero
or more predicates. Location paths areabsoluteif they be-
gin with a ’/’; otherwise they arerelative. Table 1 provides
the BNF for the XPath subset that we shall use in this pa-
per (we refer to expressions satisfying this grammar as Re-
stricted XPaths –Rxp).2

XPath expressions are evaluated relative to a context
node in the document tree. The context node for an ab-
solute location path is always the root element. To evaluate
a relative location path,Step / RelLocPath, with respect to a
context node,c, one first computesSteprelative toc, yield-
ing a set of elements,N . The meaning ofStep / RelLocPath
is the union of the sets of elements obtained by evaluating
RelLocPathin contextd, whered ranges overN .

The set of elements searched in the evaluation of aStep
at a context node,c, depends on its axis specifier. For ex-
ample, the result of evaluatingdescendant::section is the
subset of the proper descendants of the context node that
matchsection. While theχαoς algorithm is extensible to
handle all thirteen axis specifiers in XPath 1.0, we focus on
four: child, descendant, parent, and ancestor.

Steps may contain predicates, which restrict the
set of elements selected. For example,descen-
dant::chapter[ancestor::book and child::table] selects all
chapter descendants of the context node that have abook
element as an ancestor and atable element as a child. Note
that eachchapter element is used as a context node in eval-
uating the subexpressions,ancestor::book andchild::table.

2We will not use abbreviated XPath expressions in this paper.
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Figure 2. (a) An XML Document (b) Tree representation of the same document. The number in
parentheses next to the tag of each element is the id of the element.

3 X-tree, X-dag, and Matchings

χαoς operates on two representations of an XPath ex-
pression called x-tree and x-dag. The x-dag is a key con-
struct in our algorithm since it converts backward con-
straints into forward constraints, thus making streaming
processing possible. We use an alternate semantics of
XPath expressions defined based on the notion ofmatch-
ings. It can be shown that our semantics is equivalent to the
semantics provided in the XPath 1.0 specification.

3.1 X-tree

We represent anRxp as a rooted treeT = (VT , ET ),
called x-tree, with labeled vertices and edges. The root of
the tree is labeledRoot. We use the term x-node to refer to
the vertices of an x-tree. For everyNodeTestin the expres-
sion, there is an x-node in the x-tree labeled with the node-
test. Each x-node, other thanRoot, has a unique incoming
edge labeled with theAxis specified before theNodeTest.
The x-node corresponding to the rightmostNodeTestwhich
is not contained in aPredExpris designated to be the out-
put x-node. There are functions,label : VT → String,
andaxis : ET → {ancestor, parent, child, descendant}
that return the labels associated with the x-nodes and edges
respectively. The x-tree data structure is similar to XPE
trees [5], andparse trees[13].3 Figure 3a provides an ex-
ample of an x-tree.

3.2 X-dag

We also use a directed, acyclic graph representation of an
Rxp called an x-dag. The x-dag is obtained from the x-tree

3We provide rules for building an x-tree from anRxp in Appendix A.

by reformulating the ancestor and parent constraints in the
tree as descendant and child constraints. More precisely, it
is a directed, labeled graph,G = (VG , EG), with the same
set of vertices asT , and edges defined as follows:

1. Edges inT labeledchild or descendant are also edges
of G.

2. For each edge inT labeledparent, there is an edge
joining the same nodes but with direction reversed and
label changed tochild. Similarly, ancestor edges are
reversed and relabeled asdescendant edges.

3. For any non-root x-nodev ∈ G that has no incoming
edges, adescendant edge is added fromRoot to v.

Figure 3b gives the x-dag for the x-tree in Figure 3a.

3.3 Matchings

Letv1 andv2 be two x-nodes in an x-treeT connected by
an edgee, and letd1 andd2 be two elements in a document
D, wheretag(d1) = label(v1) and tag(d2) = label(v2).
We say that the pair(v1, d1) is consistentwith (v2, d2) (rel-
ative to x-treeT and documentD) if d1 andd2 satisfy the
relationaxis(e). For example, ifv1 andv2 are connected
by an edge labeledancestor, thend2 must be an ancestor
of d1 in D. A matching forT , m : VT → VD, is a partial
mapping from x-nodes of x-treeT to elements of document
D such that the following conditions hold.

1. All mapped vertices satisy the node test,i.e., for all
x-nodesv ∈ domain(m), label(v) = tag(m(v)).

2. For all x-nodesv1 andv2 connected by an edge inT
such thatv1, v2 ∈ domain(m), (v1,m(v1)) is consis-
tent with(v2,m(v2)).
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Figure 3. (a) X-tree representation of /descendant::Y[child::U]/descendant::W[ancestor::Z/child::V] (b) X-dag
representation of the same XPath expression. The circles corresponding to W have a thick edge to
represent the fact that it is the output node.

A matching isat an x-nodev if and only if its domain is
contained in the sub-tree rooted atv. A matching atv is total
if its domain contains all the vertices of the subtree rooted
at v. Let T denote the x-tree corresponding to anRxp r. It
is easy to show that a document elementn is in the result of
the evaluation ofRxp r, if and only if, there exists a total
matching forT at Root in which the output x-node ofT
is mapped ton. χαoς evaluates anRxp r precisely in this
manner. It finds all total matchings forT atRoot, and emits
the elements corresponding to the output x-node.

The notion of a matching can be analogously extended
to an x-dag. A matching isat an x-nodev of x-dagG if and
only if its domain is contained in thesub-dagrooted atv.
Once again, it is easy to show that a total matching at the
root of a x-treeT is also a total matching at the correspond-
ing x-dagG, and vice-versa.

4 Theχαoς Algorithm

Central to theχαoς algorithm is the observation that
a total matching at an x-node,v, is composed of to-
tal matchings at each of the children ofv in T . Let
w1, w2, . . . , wn denote the children ofv in T (in an ar-
bitrary, but fixed order) and letm1,m2, . . . ,mn be total
matchings atw1, w2, . . . , wn respectively. Lete be an el-
ement in a documentD such that 1)tag(e) is the same as
label(v), and 2) for each childwi of v, (v, e) is consistent
with (wi,mi(wi)). Then, a total matching atv can be ob-
tained trivially by taking a disjoint union of all the mapsmi

and the singleton map[v 7→ e]4. For example, looking at

4The singleton map[v 7→ e] refers to a partial map which mapsv to e
and is undefined everywhere else.

the x-tree in Figure 3a and document in Figure 2, a total
matching atZ i.e. [Z 7→ Z4,3,V 7→ V5,4], together with the
fact that(W,W7,4) is consistent with(Z, Z4,3), yields the
total mapping[W 7→W7,4, Z 7→ Z4,3,V 7→ V5,4] at W.5

We can make a similar observation about a total match-
ing at x-nodev of an x-dagG, but it is more complex than
the case of an x-tree. In particular, the existence of a to-
tal matching atv implies the existence of total matchings
at each of its children inG but the converse is not true.
The complication arises from the fact that the set of x-
nodes in the sub-dags rooted at each of the children ofv
are not necessarily disjoint. We refer to these x-nodes that
are shared by more than one sub-dag asjoin points. For
example, consider the x-dag in Figure 3b. The sub-dags at
Y and Z share a common x-nodeW, which is therefore a
join point. Consider total matchings atY and atZ in our
example. The existence of these matchings do not neces-
sarily imply the existence of a total matching atRoot. For
there to be a total matching atRoot, the two total match-
ings at Y and Z must agree onW, i.e., must mapW to
the same element in the document. For example, the to-
tal mappings[Y 7→ Y10,2,W 7→ W12,4,U 7→ U13,3] and
[Z 7→ Z4,3,W 7→ W7,4,V 7→ V5,4] at Y andZ respectively
cannot be combined to form a total matching atRoot.

An algorithm that constructs a total matching at an x-
nodev of x-dagG from total matchings at each of the chil-
dren ofv in G must ensure that the total matchings at the
children agree on the join points. This verification can be
expensive. Furthermore, total matchings at each of the chil-
dren must be retained until they are composed, at which
time it may be determined that these matchings do not agree

5Recall from Section 2.1 thatTi,j denotes the document element with
tagT, id = i andlevel = j.
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on the join points, and therefore, cannot contribute to a total
matching atv. To minimize storage, we would like to be
able to discard such matchings as early as possible.

Consider the special situation when there are no join
points in the x-dag, that is, when the x-dag is a tree (the
Rxp does not use theparent or ancestor axis). In this case,
there is a relatively straightforward algorithm for construct-
ing total matchings by composition. For an x-nodev, the
algorithm starts looking for a total matching at a childv′

of v once it finds elementse ande′ that matchv andv′ re-
spectively such that(v, e) is consistent with(v′, e′). It can
be easily verified that when the event corresponding to the
end of elemente is seen, if one has found at least one total
matching at each child ofv, then there must exist at least one
total matching atv in whichv is mapped toe. Conversely, if
one has not found a total matching for one or more children
of v, then there does not exist a total matching atv in which
v is mapped toe.

One can extend this algorithm to handle general x-dags
as long as we ensure that when the algorithm constructs to-
tal matchings from children total matchings, the consistency
of the assignments to join points is checked. To avoid this
verification step, we use the x-tree rather than the x-dag as
the basis for constructing total matchings from subordinate
total matchings. The algorithm cannot, however, be applied
to x-trees directly — it is not always possible to determine at
the end of an elemente that matches x-nodev ∈ T whether
there exists a total matching atv, wherev is mapped toe.
For example, consider the x-tree in Figure 3a. Lete ande′

be elements in the document that matchW and Z respec-
tively such thate′ is an ancestor ofe. When the event cor-
responding to the end of elemente is seen, the absence of a
total matching atZ does not imply the non-existence of a to-
tal matching atW in which W is mapped toe. It is possible
that an elemente′′ (which is a child of elemente′) matching
V will be seen later, which will contribute to a total match-
ing atZ, and consequently, to a total matching atW.

Our final algorithm uses a subtle combination of both the
x-tree and the x-dag to compute total matchings at the root.
The x-dag is used to filter out the relevant events from the
input event stream and determine when matchings stored at
the children of an x-nodev can be safely discarded,i.e. are
guaranteed not to contribute to a total matching atv. The
x-tree is used as the basis for determining when and what
to compose to avoid the expensive verification of join point
assignments in the x-dag. In this section, we shall describe
these two components of our algorithm and a data struc-
ture called thematching-structure, which represents a set
of matchings, in greater detail. The first component deals
with determining when to start looking for a total matching
at a x-node. The second component is regarding the com-
position of matchings to construct a matching-structure that
represents the set of all total matchings at the root.

In Table 2, we have provided a walk through of the ex-
ecution of the algorithm on theRxp of Figure 3 and the
document of Figure 2.

4.1 Looking For Total Matchings

At any point during execution,χαoς has processed a
prefix of the input document. An infinite number of XML
documents share the same prefix, andχαoς cannot predict
the future sequence of events that will be generated by the
parser. An element,e, is relevantif there exists some docu-
ment completion wheree participates in a total matching at
Root. All relevant elements must be processed. As events
are processed, new relevant elements may be seen, or ele-
ments that were earlier deemed relevant may no longer be
relevant. The x-dag representation of theRxp is used to
determine if an element is relevant.

An element that does not match any x-node is not rel-
evant trivially since it cannot participate in any matching.
Moreover, even some elements that match an x-node can
be discarded. Consider the start element event forW3,3.
This element matches theW x-node in the x-dag, but is not
relevant because it has noZ ancestor element in the docu-
ment; there is no total matching in whichW3,3 participates
that assigns an elementz to Z such thatz is an ancestor of
W3,3. Since the input document is processed in a depth-
first manner, by the time the start element event forW3,3 is
processed, the algorithm has already received start element
events for all ancestors ofW3,3 in the input document. It
can, therefore, determine if theW element hasY andZ an-
cestors in the document, and discard theW element if does
not satisfy these constraints.

To be more precise, an elemente that matches a x-
nodev is relevant if and only if there exists a matching,
m : V ′ → E′, whereV ′ is the set of x-nodes containing
v and all ancestors ofv in the x-dag, andE′ is the set of
document elements containinge and all ancestors ofe in
the document, such that ifv1, v2 ∈ V ′ are connected by
an edge, then(v1,m(v1)) is consistent with(v2,m(v2)).
For efficient determination of whether the element associ-
ated with a start element event is relevant, we maintain a
looking-for set,L. The members ofL are(v ∈ VP , level)
pairs, where level may be an integer or∗. The looking-for
setL is maintained such that if the elemente associated
with a start element event is relevant, then, and only then,
there exists(v, level) ∈ L such thatlabel(v) = tag(e),
and eitherlevel = level(e) or level = ∗. Integer lev-
els are used to enforce the constraint that if(v1, e1) and
(v2, e2) are consistent and ifaxis(v1, v2) = child, then
level(e2) = 1 + level(e1). L is initially set to{(Root, 0)}.

For example, at the end of Step 3 in the execution of
the algorithm on the XPath expression in Figure 3 on the
document of Figure 2 (See Table 2), the looking for set is
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Table 2. Walk through of evaluation of XPath of Figure 3 on document of Figure 2. S (E): Ax,y denotes
the start (end) element event for an element, Ax,y. The Looking-for set column shows L at the end of
processing the event.

Event Matches Comments Looking-for Set
1 S: Root0,0 (Root, 0) Add (Y, ∗) and(Z, ∗) to L, sinceRoot matches their ancestors in the

x-dag.
{(Y, ∗), (Z, ∗)}

2 S: X1,1 Discarded. {(Y, ∗), (Z, ∗)}
3 S: Y2,2 (Y, ∗) Add (U, 3) to L becauseU is connected toY by a child edge in the

x-dag, andY is matched at level 2. Do not addW to L because there is
no element that matches itsZ parent in the x-dag. Continue looking for
(Y, ∗) because any element with tagY in the subtree of this element will
also be a candidate for matchingY.

{(Y, ∗), (Z, ∗), (U, 3)}

4 S: W3,3 Discarded. ThisW is not relevant because it has no match inL. Stop
looking for (U, 3) because until the end of this element,level > 3

{(Y, ∗), (Z, ∗)}

5 E: W3,3 Discarded. Start looking for(U, 3) again since thelevel is back at2. {(Y, ∗), (Z, ∗), (U, 3)}
6 S: Z4,3 (Z, ∗) Start looking for(V, 4) since we have relevant elements matchingZ and

Root in the x-dag. Look for it at level 4 because the(Z, V ) edge is
labeledchild. Stop looking for(U, 3)

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

7 S: V5,4 (V, 4) Stop looking for(V, 4) because until the end of this element,level > 4. {(Y, ∗), (Z, ∗), (W, ∗)}
8 E: V5,4 (V, 4) There is a total matching atV,MV,5. This matching-structure is propa-

gated to the appropriate submatching ofMZ,4, the only parent-matching
ofMV,5. Start looking for(V, 4) again since thelevel is back at3.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}.

9 S: V6,4 (V, 4) {(Y, ∗), (Z, ∗), (W, ∗)}
10 E: V6,4 (V, 4) Again,MV,5 is added to the appropriate submatching ofMZ,4. {(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}
11 S: W7,4 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
12 S: W8,5 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
13 E: W8,5 (W, ∗) W in the x-dag has an outgoingancestor edge. All child-matchings

ofMW,8, in this case,MZ,4, are propagated into the appropriate sub-
matching ofMW,8. All submatchings ofMW,7 are now non-empty.
MW,8 is propagated toMY,2

{(Y, ∗), (Z, ∗), (W, ∗)}

14 E: W7,4 (W, ∗) As above,MW,7 is propagated toMY,2. {(Y, ∗), (Z, ∗), (W, ∗)(V, 4)}
15 E: Z4,3 (Z, ∗) Z has an incoming edge labeledancestor. SinceMZ,4 is satisfied, no

clean up is necessary.
{(Y, ∗), (Z, ∗)(U, 3)}

16 S: U9,3 (U, 3) {(Y, ∗), (Z, ∗)}
17 E: U9,3 (U, 3) The total matching atU,MU,9 is propagated toMY,2. {(Y, ∗), (Z, ∗), (U, 3)}
18 E: Y2,2 (Y, ∗) MY,2 is satisfied since both submatchings, corresponding toU andW

are non-empty. PropagateMY,2, and we have a total matching atRoot.
{(Y, ∗), (Z, ∗)}

19 S: Y10,2 (Z, ∗) {(Y, ∗), (Z, ∗), (U, 3)}
20 S: Z11,3 (Z, ∗) {(Y, ∗), (Z, ∗), (V, 4), (W, ∗)}
21 S: W12,4 (W, ∗) {(Y, ∗), (Z, ∗), (W, ∗)}
22 E: W12,4 (W, ∗) SinceW has an outgoing edge labeledancestor, addMZ,11 optimisti-

cally to the appropriate submatching ofMW,12. Since this matching is
now satisifed, it is propagated toMY,10.

{(Y, ∗), (Z, ∗), (W, ∗), (V, 4)}

23 E: Z11,3 (Z, ∗) MZ,11 is not satisfied — the submatching forV is empty. Undo the prop-
agation ofMZ,11 toMW,12. SinceMW,12 now is no longer satisfied,
undo the propagation fromMW,12 toMY,10.

{(Y, ∗), (Z, ∗), (U, 3)}

24 S: U13,3 (U, 3) {(Y, ∗), (Z, ∗)}
25 E: U13,3 (U, 3) The total matching,MU,13 is propagated toMY,10. {(Y, ∗), (Z, ∗)}
26 E: Y10,2 (Y, ∗) MY,10 is not satisfied. The submatching forW is empty. Nothing is

propagated.
{(Y, ∗), (Z, ∗)}

27 E: X1,1 Discarded. {(Y, ∗), (Z, ∗)}
28 E: Root0,0 (Root, 0) There is one entry in the submatching corresponding toY, MY,2.

MRoot,0 is satisfied.
{(Root, 0)}
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{(Y, ∗), (Z, ∗), (U, 3)}. (Y, ∗) is in the looking for set be-
cause if the next start event were for an element,e, with tag
Y , there would exist a matchingm : V ′ → E′ = {Root 7→
Root, Y 7→ e}. (Z, ∗) is in the looking for set for a similar
reason.(U, 3) is in the looking for set because if the next
start element event for element,e, matched it, we would
have a matchingm : V ′ → E′ = {Root 7→ Root, Y 7→
Y2,2, U 7→ e}. e would have to be at level 3 for this match-
ing to be consistent, because there is an edge labeledchild
betweenY andU in the x-dag. We do not, however, have
entries forW or V in the looking for set, because if the next
start element event matched either of them, we could not
construct an appropriate matching (we would not have an
appropriate assignment to theZ x-node).

4.2 Matching-Structure

The second part of the algorithm constructs a data struc-
ture called amatching-structurewhich is a compact repre-
sentation of all total matchings atRoot of theRxp relative
to the input document. A matching-structure,Mv,e, is as-
sociated with x-nodev, and represents a set of matchings
at v in which v is mapped to the document elemente. The
matching-structureMv,e additionally contains a submatch-
ing for every child ofv in the x-tree. A submatching at
childw of v is a (possibly empty) set of matching-structures
atw. For any matching-structureMw,e′ in the submatch-
ing ofMv,e atw, we require that(v, e) be consistent with
(w, e′). A matching-structureMv,e is said to be aparent-
matchingof a matching-structureMw,e′ if v is a parent of
w in x-treeT and(v, e) is consistent with(w, e′). If Mv,e

is a parent-matching ofMw,e′ , then we say also thatMw,e′

is achild-matchingofMv,e.
Figure 4 shows the matching structure at the end of pro-

cessing the XPath of Figure 3 on the document in Figure 2,
and the four total matchings atRoot. The result is obtained
by taking theW projection, that is{W7,4,W8,5}.

4.3 Composition of Matchings

We assume from now on that all events corresponding to
elements that are not relevant have been discarded. When
χαoς processes a start element event for an elemente that
matches a x-node,v, it creates a matching-structure,Mv,e,
to represent the match. Note thate may match more than
one x-node in the x-tree; a matching-structure is created for
each such match. The submatchings for these matching-
structures are initially empty. Asχαoς processes events,
it stitches together these matching-structures, so that when
the end of the document is seen,MRoot,Root encodes all
total matchings atRoot in the document.

The key step in this process ispropagation. At an end
element event for an elemente that matches x-nodev, we

attempt to determine ifMv,e represents a total matching at
v. If there is a total matching, we insertMv,e into the ap-
propriate submatching of its parent-matchings. This prop-
agation may be optimistic in that one may have to undo
the propagation as more events are processed. Let us first,
however, consider the simpler situation where no cleanup of
propagation is necessary, when the x-tree does not contain
any edges labeledancestor or parent. This corresponds to
Rxp’s that use only thechild anddescendant axes.

When the x-tree contains onlychild anddescendant con-
straints, any total matchingm at v, wherem(v) = e maps
all x-nodes in the subtree ofv to elements that lie in the
document subtree ofe. Since the total matching is con-
tained within the subtree ofe, by the time the end element
event fore is seen, we can determine conclusively ifMv,e

represents a total matching atv. This leads naturally to an
inductive approach to building matchings. For an end ele-
ment evente, whereMv,e is a matching-structure:

1. If v is a leaf in the x-tree,Mv,e represents a total
matching atv by definition (v has no subtrees). We
propagateMv,e to the appropriate parent-matchings.

2. If v is not a leaf,Mv,e represents a total matching at
v, if and only if, all submatchings are non-empty. Oth-
erwise, no total matching exists. If we had found ap-
propriate total matchings for each of the children of
v in the x-tree, they would have been propagated to
Mv,e by the time the end element event fore is pro-
cessed. As above, ifMv,e represents a total matching,
we propagate it to all appropriate parent-matchings.

If at the end of processing the document (when we receive
the end element event forRoot), χαoς finds that all the
submatchings ofMRoot,Root are non-empty, we have a total
matching atRoot.

The presence ofancestor andparent edges in the x-tree
complicates this process because one may not be able to
determine conclusively whether a total matching exists for
aMv,e by the end of elemente. For example, in Figure 3a,
one might not find a total matching for the subtree rooted
at Z, until after one sees the end of an element matching
W. The propagation process remains the same, except for
an x-node that has an incoming or an outgoing edge labeled
ancestor or parent. For aMv,e, the modified steps are:

• If there is an outgoing edge(v, v′) labeledancestor or
parent, and the submatching forv′ is empty, we can-
not assert that there exists no total matching atv. We,
optimistically, propagate each child-matching,Mv′,e′ ,
into the appropriate submatching ofMv,e. We then
proceed as before. If all submatchings are satisfied,
Mv,e is propagated to its parent-matchings. For an
example, please refer to Steps 13 and 22 in Table 2.
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Root 0,0

Y 2,2

Z 4,3

W 7,4U 9,3 W 8, 5

V 5,4 V 6,4

Total Matchings at Root
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 5,W 7→ 7]
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 5,W 7→ 8]
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 6,W 7→ 7]
[Root 7→ 0, Z 7→ 4, Y 7→ 2, U 7→ 9, V 7→ 6,W 7→ 8]

Solution: {W7,4,W8,5 }

Figure 4. Matching Structure at the end of processing the XPath of Figure 3. Boxes represent
matching-structures. For a matching-structure, Mv,e, the top half of the box shows the element
that matches v. Each slot in the bottom half of the box corresponds to a submatching, which is
represented as a list of pointers to the child matchings.

• If there is an incoming edge(v′, v) labeled ances-
tor or parent, thenMv,e may have been propagated
optimistically to its parent-matchings. If we can de-
termine conclusively thatMv,e cannot represent a to-
tal matching atv, we undo the propagation ofMv,e.
The removal ofMv,e from a submatching of a parent-
matchingMv′,e′ may result in that submatching be-
coming empty —Mv′,e′ is no longer a total match-
ing at v′. We then recursively undo the propagation
ofMv′,e′ from its parent-matchings. For an example,
please refer to Step 23 in Table 2.

4.4 Emitting Output

At the end of processing the document, if the submatch-
ings ofMRoot,Root are all non-empty, we have at least one
total matching atRoot. The output is emitted by traversing
the matching structure, and emitting an elemente when we
visit Mv,e, wherev is the output x-node of theRxp. For
example, in Figure 4, we outputW7,4 when we first visit
MW,7 andW8,5, when we first visitMW,8.

5 Extensions

In this section, we discuss extensions to our algorithm
such as optimizations, handlingor expressions, multiple
outputs, and intersections and joins of XPath expressions.

5.1 Optimizations

We have described our algorithm in terms of storing all
total matchings, and subsequently, traversing the matching
structure to emit elements. We do not, however, need to

build matching-structures for many of the x-nodes in the
x-tree. For example, if the x-tree contains a subtree that
does not contain the output node, it is not necessary to store
matching structures for the nodes in that subtree. It is suffi-
cient to store a boolean value as to whether a total matching
exists at that subtree. Furthermore, often it is not neces-
sary to wait until the end of a document to emit output, but
emit elements more eagerly. A detailed discussion of these
optimizations is beyond the scope of this paper.

5.2 Or expressions

Or expressions can be handled by converting an XPath
expression into an equivalent one in “disjunctive normal
form.” χαoς can be run on each of the operands of the
top-level ’or’ independently. While this process may be ex-
ponential in terms of the size of the XPath expression, we
do not expect this to be an issue since XPath expressions
are, in general, of small size.

5.3 Multiple Outputs

One extension of XPath expressions is to allow for more
than one output node in an XPath. If we use “$” to mark
output nodes, the extended XPath expression,$a/$b returns
all (a, b) pairs in an input document such thata is the par-
ent ofb. These expressions have use in the compilation of
XQuery and SQLX statements [13]. Our algorithm can han-
dle these extended expressions easily. Given an extended
XPath expression in this form, we generate an x-dag in the
same manner as before, except that it may now contain more
than one x-node marked as an output node. Our matching
semantics are independent of the number of output nodes
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in the x-dag, and the matching structure allows easy pro-
duction of the resultant tuples — the only change is in the
output traversal.

5.4 Intersections and Joins of XPath expressions

The x-dag representation can also be viewed as a rep-
resentation of the intersection of two XPath expressions.
For example, the x-dag of Figure 3b can be interpreted as
//Y[U]//W ∩ //Z[V]//W. In other words, it returns allW ele-
ments that are in the solution set of both XPath expressions
when they are evaluated on an input XML document.

An x-dag with multiple output nodes, derived from an
extended XPath as described previously, can also be used
as a representation for joins of XPath expressions. For ex-
ample, assume that the x-nodes,U, W andV were marked
as output nodes in Figure 3b. The x-dag then could be
interpreted either as either//Y[$U]//$W[ancestor::Z/$V] or
//Y[$U]//$W ./W //Z[$V]//$W.

Since these joins and intersections can be expressed as an
x-dag with multiple output nodes, as mentioned previously,
we can handle these expressions in our framework. The
x-dag representation of intersections and joins allows these
expressions to be evaluated in a single pass during pars-
ing. In contrast, TurboXPath [13] advocates a more com-
plex two-phased approach in which the burden of evaluating
the intersections or joins is shifted to a backend database.

6 Experimental Results

The χαoς algorithm examines each element event ex-
actly once and the processing of an event involves only
constant-time operations. We would, therefore, expect the
execution time ofχαoς algorithm to be linear in terms of the
input document size. Furthermore,χαoς stores only those
elements relevant to the calculation of the final solution. We
would, therefore, expect theχαoς algorithm to show better
memory utilization than Xalan [2], which stores the whole
document in memory. In this section, we provide experi-
mental results that validate these claims. We, first, provide
results using documents generated by XMark [15]. To gain
further insight into the relative performance ofχαoς and
Xalan, we also run experiments using a custom XPath and
XML document generator.

All experiments were run on a 550 MhZ, 256 MB, Pen-
tium III box, running Linux 2.4.χαoς was written in C++,
and we use Xalan-C++ 1.3.1. Bothχαoς and Xalan were
compiled using gcc -O (version 2.92).

6.1 Experiments using XMark

Using XMark, we generated documents with scale fac-
tors .03125, .0625, .125, .25, .5, 1, 2, and 4, respectively.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400 450 500

Document Size (MB)

Ti
m

e 
(s

)

Xalan

Xaos

Figure 5. Time in seconds on XMark-
generated documents: χαoς versus Xalan.
The XPath expression executed is //lis-
titem/ancestor::category//name

Table 3. Number of elements discarded by
χαoς in processing of XMark-generated doc-
uments

Scale Doc. Size Elements % Discarded
.03125 3.49 MB 52069 99.8 %
.625 6.88 MB 103999 99.8 %
.125 13.86 MB 210538 99.8 %
.25 27.87 MB 417160 99.8 %
.5 55.32 MB 832911 99.8 %
1 111.12 MB 166311 99.8 %
2 222.90 MB 3337649 99.8 %
4 446.71 MB 6688651 99.8 %

These correspond to documents ranging in size from 3.5
MB to 446 MB. We then evaluate the XPath expression,
//listitem/ancestor::category//name on these documents, us-
ing bothχαoς and Xalan. Figure 5 reports the results of
these experiments.

Note that Xalan fails to complete on the two largest doc-
uments (approx. 222 MB and 446 MB), and furthermore,
that there is a sharp spike in going from 55 MB to 111
MB. These effects can be attributed to the memory require-
ments of Xalan (the spike is the region where Xalan ex-
hibits thrashing behavior in memory). On the other hand,
χαoς scales linearly, as is expected. Table 3 reports the
number of elements discarded by the algorithm as not being
relevant. As can be seen from the results, a very small per-
centage of elements in a document (less than .2 %) is stored
and processed, resulting in a signficant reduction in storage
requirements.
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6.2 Custom XPath generator

We use a custom XPath generator to generate a set of
random XPath expressions (of size 6 – six node tests in the
expression), and for each XPath expression, we generate
a random XML document based on the XPath expression.
The generated XML document has the characteristic that,
for large document sizes, the XPath expression will have
many matches (and near matches) in the document.

We use two versions ofχαoς in our comparison. The
first, χαoς(SAX), uses the Xerces SAX parser [3], which
is also used by Xalan. To factor out the costs of parsing
and building a tree from the time to evaluate an expression,
we also implemented a version ofχαoς on top of Xalan.
χαoς(DOM) builds an internal version of the input docu-
ment in the same way that Xalan does. We then traverse this
tree in a depth-first fashion and generate events that a SAX
parser would. By subtracting the parsing and tree-building
time from the overall time, we get an accurate measure of
the time spent in evaluating the expression.

We vary the XML document size from 20,000 elements
to 640,000 elements (200K - 6.7 MB). At each document
size, we execute 10 runs of the following:

1. Generate an XPath expression.

2. Generate an XML document from the XPath expres-
sion.

3. Evaluate the XPath expression usingχαoς and Xalan.

We report the average execution time and the standard
deviation of the 10 runs at each XML document size.

6.2.1 Overall Execution Time

We first compare the performance ofχαoς to that of us-
ing the Xalan XPath engine (SimpleXPathAPI). Figure 6
plots the average execution time (average over the 10 runs
at each document size) versus document size (in number of
elements). The error bars represent the standard deviation
from the mean. All times include the cost of parsing.

As can be seen from the graph,χαoς(SAX) is roughly
25% faster than the Xalan XPath engine. With documents
of size 640,000 elements (6.7 MB) the average times are
χαoς: 39.0 seconds, Xalan XPath: 52.28 seconds. Note the
difference in the standard deviations between the two lines
(the error bars in the plot). Whereas the standard deviation
for χαoς is relatively constant, that of Xalan XPath is fairly
high. We shall discuss this behavior in the next section.

6.2.2 Comparison Excluding Parsing Times

Excluding parsing costs, the performance of our XPath en-
gine is more than twice that of the Xalan engine (Figure 7).
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This is mainly due to avoiding unnecessary traversals of the
tree. Note that the difference in standard deviation is much
more apparent in this graph. The cause of this high vari-
ance is the bimodal behavior of the Xalan XPath engine.
On “good” XPath expressions, where it does not perform
many unnecessary traversals, the performance of the Xalan
XPath engine is similar to that of ours. On “bad” XPath ex-
pressions, such as those involving the use of the descendant
axes, its performance can be four times worse. Our XPath
engine’s performance, however, is linear in the size of the
XML document and shows little variance.

7 Summary

We have presented a novel algorithm for handling back-
ward and forward XPath axes in a streaming fashion. Our
experiments reveal that significant performance benefits can
be obtained by using theχαoς algorithm for evaluating
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XPath expressions on XML documents in a streaming fash-
ion. Furthermore,χαoς has significantly lower storage re-
quirements.
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A Rules for Building an X-tree

We represent anRxp expression as a rooted treeT =
(VT , ET ) called X-tree, with labeled vertices and edges.
The root is labeledRoot. For eachNodeTestin the ex-
pression, there is an x-node in the x-tree labeled with the
nodetest. Each x-node (exceptRoot) has a unique incom-
ing edge labeled with theAxis specified before theNode-
Test. One of the x-nodes is designated to be the output
x-node. There are functions,label : VT → String, and
axis : ET → {ancestor, parent, child, descendant} that
return the labels associated with the x-nodes and edges re-
spectively. An x-tree-like structure is also defined for a
RelLocPath, which is called an x-forest. It consists of two
rooted trees, one rooted atRoot, and the other rooted at a
special x-node labeledcontext, which, like Root, has no
incoming edges. The structure corresponding to aPred-
Expr may either be an x-tree or an x-forest, but none of the
x-nodes is designated as an output x-node. The following
rules can be used inductively (based on the structure of the
Rxp) to build a x-tree from anRxp.

Step ::= Axis :: NodeTest The x-forest forStep con-
tains three x-nodes labeledRoot, context, and
NodeTest (designated as the output node), and an
edge fromcontext toNodeTest labeledAxis.

Step ::= Step1
′[′ PredExpr ′]′ Let T1 refer to the

x-forest resulting fromStep1, and T2 refer to the
x-forest or x-tree resulting fromPredExpr. The
x-forest forStep is obtained by merging the output x-
node ofT1 with thecontext x-node ofT2 (if any), and
merging the root x-nodes ofT1 andT2. The output
x-node ofT1 is designated as the new output x-node.

RelLocPath ::= Step ′/′ RelLocPath1 Let T1 and
T2 refer to the x-forests obtained fromStep
and RelLocPath1 respectively. The x-forest for
RelLocPath is obtained by merging the output
x-node ofT1 with thecontext x-node ofT2, merging
the root x-nodes ofT1 and T2, and designating the
output x-node ofT2 as the new output x-node.

PredExpr ::= RelLocPath and PredExpr1 Let T1

andT2 refer to the structures obtained fromRelLoc-
Path andPredExpr1 respectively. The x-forest for
PredExpr is obtained by merging thecontext of T1

with the context of T2 (if any), and merging the root
x-nodes ofT1 andT2. There is no output vertex.

PredExpr ::= AbsLocPath and PredExpr1 similar to
the previous case.

AbsLocPath ::=′ /′ RelLocPath The x-tree is obtained
by mergingRoot andcontext x-nodes of the x-forest
obtained fromRelLocPath.
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