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algorithm significantly outperforms (by more than a factor
of two) a traditional non-streaming XPath engine. Further-
more, our algorithm scales better because it retains only
the relevant portions of the input document in memory. Our
engine successfully processes documents over 1GB in size,
whereas the traditional XPath engine degrades consider-
ably in performance for documents over 100 MB in size and
fails to complete for documents of size over 200 MB.

tomaton. The XPath engine consumes events (for example,
SAX events) produced by a parser. For each event, the au-
tomaton may make state transitions, and if necessary, store
the element. At the end of processing the stream (or docu-
1 Introduction ment), the XPath engine returns the list of elements that is
the result of the evaluation of the XPath expression.

XPath 1.0 [8], a language for addressing parts of Most current XPath engines, for example, the one pro-
XML [4] documents, is an integral component of languages Vided with Xalan [2], require that an entire document be in
for XML processing such as SQLX [14], XSLT [7] and memory before evaluating an XPath expression. For large
XQuery [10]. The performance of implementations of documents, this approach may result in unacceptable over-
these languages depends on the efficiency of the underhead. Furthermore, the XPath engine in Xalan may perform
lying XPath engine. XPath expressions have also beenunnecessary traversals of the input document. For example,
used as a general-purpose mechanism for accessing portior@nsider an expression such/ésscendant::x/ancestor::y,
from XML documents, for example, an XPath-based APl Which selects aly ancestors of elements in the document.
is provided in DOM 3 [17] for traversing DOM [12] trees.  The Xalan XPath engine evaluates this expression by using
XPath expressions have found use in publish-subscribe sysone traversal over the entire document to find allxtede-
tems as a mechanism for specifying content-based subscripments, and for eachelement, a visit to each of its ancestors
tions [1, 5]. Given the central role that XPath plays in the to find appropriatg elements. As aresult, some elements in
XML stack, algorithms for improving the performance of the document may be visited more than once. In the worst
evaluating common XPath expressions are essential. case, Xalan's implementation may take time¢D" ), where

In many environments, it is natural to treat the data D denotes the size of the document ant$ the number of
source as a stream, processing queries on the data sourd@eps in the XPath expression [11].
as it is parsed. Examples include XML filtering sys- The premise of streaming XPath is that in many in-
tems [1, 9, 5], Continuous Query Systems [6], and systemsstances XPath expressions can be evaluated in one depth-
where high-volume XML data sources are integrated in a first, document-order traversal of an XML document. The
federated manner [13]. An XPath engine that operates onbenefits of streaming XPath are twofold. First, rather than
a streaming data source is structured as shown in Figure 1storing the entire document in memory, only the portion
An XPath expression is analyzed and represented as an awf the document relevant to the evaluation of the XPath is



stored. Second, the algorithm visits each node in the docu-1.1 Related Work
ment exactly once, avoiding unnecessary traversals.
. . . .

In this paper, we present thevos " algorithm, which can Our work is most closely related to tbéilter [1], YFil-
evaluate XPath expressions containing both backward (sucqer [9], XTrie [5], and TurboXPath[13] systems, all of
asparent andancestor) and forward axes (such asidand  \ hich involve evaluation of XPath/XQuery-based queries
descendant) in a streaming fashion in time linear in the size streaming XML documents. XFilter, YFilter, and XTrie
of the document. Other streaming XPath processors, suchy e x| filtering systems where documents are routed and
as YFilter [9], XTrie [5], and TurboXPath [13] handle only  fiiered hased on subscriptions expressed as queries. The
forward axes. ‘ o _ TurboXPath system has been used for XML-enabled data

Central to theyaos algorithm is the conversion of an jnsaqration where queries operate over a mixture of locally
XPath expression into a representation, calledddeg in - g5req data in a relational database and data streamed from
which all uses of backward axes are converted into forward oy;arnal sources. The XFilter system handles simple XPath
constraints — a key step in making streaming XPath pro- |,cation path expressions (path expressions without branch-
cessing possible. This representation is used to perform thg, or predicates) by transforming them into a Determinis-
two major operations of the algorithm: filtering incoming i Finite Automaton. The YFilter system is an extension
events to select those that affect the evaluation of the XPathy¢ yrilter in which a group of simple XPath location path
expression, and recording information in a data structure o yressions are combined into a single Nondeterministic Fi-
called thematching structurevhen parts of the input XPath - pjse Aytomaton. Both XTrie and TurboXPath handle tree-
expression have been satisfied. These_two operations are INshaped path expressions involving predicates (which are in-
terleaved so that at the end of processing the document, theg 1y represented as trees called the XTrie and ParseTree
matching structure contains the solution of the evaluation respectively). In addition, TurboXPath can also handle mul-
O,f thg XPath ex.pre.ssion. This paper makes the following tiple output nodes. However, all of these systems are lim-
significant contributions: ited to handling location path expressions that only contain

1. A novel streaming algorithm for handling both back- forward axes. Theaos system improves upon these sys-
ward and forward axes, which can be extended to han-t€ms by adding the ability to handle both backward (e.g.
dle all XPath axes. Theaos algorithm can handle ~ Parent, ancestor) and forward axes in the context of stream-
both recursive and non-recursive documents. ing XML. Our approach also handles multiple output nodes

but we shall discuss it only briefly.

2. A concise representation of an XPath expression, Tozawa and Murata [16] describe a method for convert-
called x-dag (Section 3.2) in which all backward con- ing an XPath expression into modal logic formulas with past
straints are converted into forward constraints. The modalities. They present an algorithm for converting such
x-dag is also a convenient representation for intersec-formulas into tree automata, which can be used to evalu-
tions and joins of XPath expressions, which we shall ate XPath expressions on an input document. Their paper
discuss only briefly in this paper. describes a theoretical approach that can handle all XPath

axes. The current status of the implementation of their al-

gorithm is unclear. It would be interesting to compare the
performance of their implementation with thatyfos.

Gottlobet al.[11] present an algorithm which is linear in
the size of the document and the XPath expression for a core
subset of XPath similar to the subset considered in this pa-

This paper is structured as follows. We first present back- per. However, their algorithm relies on the input document
ground on XPath expressions in Section 2. In Section 3, being present in memory, and cannot be applied directly to
we introduce a tree-based representation of XPath expresstreaming XPath processing.

sions, called the-treg and explain how it can be converted TheNiagaraCQ[6] system is a continuous query system

into an x-dag. The x-dag is the central data structure of ourthat supports querying of distributed XML datasets using an

algorithm. We also define the semantics of the evaluation XML query language. Continuous queries allow users to re-
of XPath expressions in terms of the notionroétchings  ceive new results as they become available. The focus of the
on the x-tree and the x-dag. In Section 4, we present anNiagaraCQ project is on exploiting similarities in structure
overview of our algorithm and describe extensions to our of queries to share computation across groups of queries,
algorithm in Section 5. Our experimental results are dis- and use of incremental group optimization and incremen-
cussed in Section 6, and finally, we conclude in Section 7. tal evaluation techniques. However, the queries that they
Lyaos (Xaos, pronounced Chaos) is an acronym for XML Analysis, fOCUS On involve simple structural pattern matching rather
Optimization, and Stuff than XPath/XQuery-based queries tlyatos supports.

3. A data structure called the matching structure (Sec-
tion 4.2) that compactly represents all matchings (Sec-
tion 3.3) of an XPath expression in a document. The
result of evaluating the XPath expression can be com-
puted easily and efficiently from this data structure.




2 Background Table 1. XPath subset addressed in paper.

We describe the tree model of XML documents that is AbsLocPath = '/” RelLocPath

the basis of the definition of XPath. We then describe the RelLocPath = Step'/' RelLocPath | Step

event stream that drives thavos algorithm. Finally, we Step = Auwis : NodeTest |

present the subset of XPath that we focus on in this paper. Step'[' PredExpr ']’
PredExpr := RelLocPath and PredExpr |

2.1 Tree Model for XML Documents AbsLocPath and PredEzpr |

RelLocPath | AbsLocPath

Axis := ancestor | parent | child |

An XML document can be represented as a tree, whose descendant
nodes represent the structural components of the document  x 7o7est .—  String
— elements, text, attributes, etc. Parent-child edges in the
tree represent the inclusion of the child component in its
parent element, where the scope of an element is bounded
by its start and end tags. The tree correspondingto an XML5 3 xpath
document is rooted at a virtual elemeRpot, which con-
tains the document element. We will, henceforth, discuss

XML documents in terms of their tree representatidn; The XPath language defines expressions for addressing
represents an XML document, aft@ and Ep denote it parts of an XML document. We focus docation pathex-
nodes and edges respectively. Figure 2 illustrates the tregyressions which evaluate to a set of elements in the doc-
representation of an XML document. ument. A location path is a structural pattern composed
For simplicity of exposition, we focus on elements in of sub-expressions calletep joined by the /' character.

this paper, and ignore attributes, text nodes, etc. The treegach step consists of axis specifieranodetestand zero
therefore, consists of the virtual root and the elements of g more predicates. Location paths afesoluteif they be-

the document. To avoid confusion between the XML doc- gin with a '/; otherwise they areelative Table 1 provides

ument tree and the tree representation of the XPath (dethe BNF for the XPath subset that we shall use in this pa-

scribed later), we uselementdo refer to the nOQes of the  per (we refer to expressions satisfying this grammar as Re-
XML tree. We assume that the following functions are de- stricted XPaths Rxp).2

fined on the elements of an XML document:

XPath expressions are evaluated relative to a context

e id : Vp — Integer: Returns a unique identifier for node in the document tree. The context node for an ab-
each element in a document. solute location path is always the root element. To evaluate

) a relative location pattstep / RelLocPattwith respect to a

e tag : Vp — String: Returns the tag name of the  cqniext nodey, one first computeSteprelative toc, yield-
element. ing a set of elementsy”. The meaning oStep / RelLocPath

o level : Vp — Integer: Returns the distance of the is the union of the sets of elements obtained by evaluating

RelLocPathin contextd, whered ranges ovel.

The set of elements searched in the evaluation $tep
at a context node;, depends on its axis specifier. For ex-
ample, the result of evaluatingescendant::section is the
subset of the proper descendants of the context node that
matchsection. While the yaos algorithm is extensible to
handle all thirteen axis specifiers in XPath 1.0, we focus on
four: child, descendant, parent, and ancestor.

An event-based parser, for example, a SAX parser, scans . . . :
an XML document, producing events as it recognizes ele- Steps may contain predicates, which restrict the
ment tags and other components of the document. We regSet Of €lements selected.  For exampléescen-
ister functions that are invoked by the parser on start angdant::chapter[ancestor::book and  child::table] selects all
end element events. Each event conveys the name and lev&@Pter descendants of the context node that haveak
of the corresponding element. The production of events €lement as an ancestor a}ndable element as a child. .Note
is equivalent to that of a depth-first, pre-order traversal of thajt eaclehapter eleme'nt is used as a context_ node in eval-
the document tree, where for each element, a start element/@ting the subexpressionsicestor::book andchild::table.
event is generated, then its subtree is processed in depth-
first order, and finally, an end element event is generated. 2We will not use abbreviated XPath expressions in this paper.

element from the root, wheievel(Root) = 0.

We useT,; to denote an element wittug = T,id =
i,level = [. For example, the elemeirt in Figure 2(b)
is denoted by ;.

2.2 Event-Based Parsing




<X>
<Y>
<W/>
<Z>
<V/>
<V/>
<W>

<W/>
</W>
</z>
<U/>
</Y>
<ZZ>> W)
<wi> = ]
</z> V) ‘ V) | ‘ w(7) | ‘waz) |
<U/>
Y
</:(>>
(a) (b)

Figure 2. (a) An XML Document (b) Tree representation of the same document. The number in
parentheses next to the tag of each element is the id of the element.

3 X-tree, X-dag, and Matchings by reformulating the ancestor and parent constraints in the
tree as descendant and child constraints. More precisely, it
xaos operates on two representations of an XPath ex- is a directed, labeled grapf, = (Vg, Eg), with the same
pression called x-tree and x-dag. The x-dag is a key con-set of vertices ag’, and edges defined as follows:

struct in our algorithm since it converts backward con- 1. Edges inT labeledchild or descendant are also edges

straints into forward constraints, thus making streaming of G.

processing possible. We use an alternate semantics of

XPath expressions defined based on the notiomaich- 2. For each edge i labeledparent, there is an edge
ings It can be shown that our semantics is equivalent to the joining the same nodes but with direction reversed and
semantics provided in the XPath 1.0 specification. label changed tehild. Similarly, ancestor edges are

reversed and relabeled desscendant edges.

3.1 X-tree . .
3. For any non-root x-node € G that has no incoming

We represent axp as a rooted tred” — (Vi, E), edges, alescendant edge is added frorRoot to v.

called x-tree, with labeled vertices and edges. The root of Figure 3b gives the x-dag for the x-tree in Figure 3a.

the tree is labele®oot. We use the term x-node to refer to

the vertices of an x-tree. For evelodeTestn the expres- 3.3 Matchings

sion, there is an x-node in the x-tree labeled with the node-

test. Each x-node, other th&woot, has a unique incoming Letv; andv, be two x-nodes in an x-trég connected by
edge labeled with théxis specified before th&lodeTest an edgee, and letd; andd, be two elements in a document
The x-node corresponding to the rightmblside Teswhich D, wheretag(dy) = label(v1) andtag(ds) = label(vs).
is not contained in &@redExpris designated to be the out- We say that the paifv;, d;) is consistentith (vs, d2) (rel-
put x-node. There are functiongibel : Vo — String, ative to x-tree7 and documenD) if d; andds satisfy the
andaxis : Ex — {ancestor, parent, child, descendant} relationazis(e). For example, ifv; andv, are connected
that return the labels associated with the x-nodes and edgeby an edge labeledncestor, thend, must be an ancestor
respectively. The x-tree data structure is similar to XPE of d; in D. A matching for7, m : V+ — Vp, is a patrtial
trees [5], andparse treeg13].2 Figure 3a provides an ex- mapping from x-nodes of x-treE to elements of document
ample of an x-tree. D such that the following conditions hold.

3.2 X-dag 1. All mapped vertices satisy the node test, for all
' x-nodesv € domain(m), label(v) = tag(m(v)).

We also use a directed, acyclic graph representationofan 2. For all x-nodes;; andv, connected by an edge 1fi
Rxpcalled an x-dag. The x-dag is obtained from the x-tree such thatyy, v, € domain(m), (vi, m(vy)) is consis-

3We provide rules for building an x-tree from &xpin Appendix A. tent with (ve, m(vs)).



Figure 3. (a) X-tree representation of

represent the fact that it is the output node.

A matching isat an x-nodev if and only if its domain is
contained in the sub-tree rootedvatA matching av is total

/descendant::Y[child::U]/descendant::W[ancestor::Z/child::V] (b) X-dag
representation of the same XPath expression. The circles corresponding to

W have a thick edge to

the x-tree in Figure 3a and document in Figure 2, a total
matching aZ i.e. [Z — Z4 3,V — V5 4], together with the

if its domain contains all the vertices of the subtree rooted fact that(w, W7 4) is consistent with(z, Z, 3), yields the

atv. Let7 denote the x-tree corresponding toRRp r. It
is easy to show that a document elemeis in the result of
the evaluation ofkxp r, if and only if, there exists a total
matching for7 at Root in which the output x-node of
is mapped tow. yaos evaluates amRxp r precisely in this
manner. It finds all total matchings f@r atRoot, and emits
the elements corresponding to the output x-node.

total mappingW — Wy 4,Z +— Z4 3,V — Vs 4] atW.®

We can make a similar observation about a total match-
ing at x-nodev of an x-dagg, but it is more complex than
the case of an x-tree. In particular, the existence of a to-
tal matching aty implies the existence of total matchings
at each of its children i but the converse is not true.
The complication arises from the fact that the set of x-

The notion of a matching can be analogously extendednodes in the sub-dags rooted at each of the children of

to an x-dag. A matching iat an x-nodev of x-dagg if and
only if its domain is contained in theub-dagrooted atv.

are not necessarily disjoint. We refer to these x-nodes that
are shared by more than one sub-dago@s points. For

Once again, it is easy to show that a total matching at theexample, consider the x-dag in Figure 3b. The sub-dags at
root of a x-tree7 is also a total matching at the correspond- Y andZ share a common x-nod#, which is therefore a

ing x-dagg, and vice-versa.
4 The yaos Algorithm

Central to theyaog algorithm is the observation that
a total matching at an x-nodej, is composed of to-
tal matchings at each of the children ofin 7. Let
w1, W, ..., w, denote the children of in 7 (in an ar-
bitrary, but fixed order) and let,, mo, ..., m, be total
matchings atw,, wo, ..., w, respectively. Let be an el-
ement in a documern® such that 1Yag(e) is the same as
label(v), and 2) for each childy; of v, (v, e) is consistent
with (w;, m;(w;)). Then, a total matching atcan be ob-
tained trivially by taking a disjoint union of all the maps
and the singleton majp — e]*. For example, looking at

4The singleton magu — €] refers to a partial map which mapgo e
and is undefined everywhere else.

join point. Consider total matchings #&tand atz in our
example. The existence of these matchings do not neces-
sarily imply the existence of a total matchingRaot. For
there to be a total matching Root, the two total match-
ings atY and Z must agree orw, i.e, must mapw to

the same element in the document. For example, the to-
tal mappings)Y — Yig2,W — Wiz 4,U — Uz 3] and
[Z— Zy3,W— W74,V — Vs,4] atY andz respectively
cannot be combined to form a total matchindraiot.

An algorithm that constructs a total matching at an x-
nodev of x-dagg from total matchings at each of the chil-
dren ofv in G must ensure that the total matchings at the
children agree on the join points. This verification can be
expensive. Furthermore, total matchings at each of the chil-
dren must be retained until they are composed, at which
time it may be determined that these matchings do not agree

5Recall from Section 2.1 th&; ; denotes the document element with
tagT, id = i andievel = j.



on the join points, and therefore, cannot contribute to atotal  In Table 2, we have provided a walk through of the ex-
matching atv. To minimize storage, we would like to be ecution of the algorithm on th&xp of Figure 3 and the
able to discard such matchings as early as possible. document of Figure 2.

Consider the special situation when there are no join
points in the x-dag, that is, when the x-dag is a tree (the4.1 Looking For Total Matchings
Rxp does not use thgarent or ancestor axis). In this case,
there is a relatively straightforward algorithm for construct- At any point during executionyaos has processed a
ing total matchings by composition. For an x-nodethe  prefix of the input document. An infinite number of XML
algorithm starts looking for a total matching at a chifd  gocuments share the same prefix, aads cannot predict
of v once it finds elementsande” that matchw andv’ re- the future sequence of events that will be generated by the
spectively such thaw, e) is consistent with{v', ¢’). ltcan  parser. An element, is relevantif there exists some docu-
be easily verified that when the event corresponding to thement completion where participates in a total matching at
end of element is seen, if one has found at least one total Root. All relevant elements must be processed. As events
matching at each child af, then there must exist atleastone gre processed, new relevant elements may be seen, or ele-
total matching ab in whichv is mapped te. Conversely, if  ments that were earlier deemed relevant may no longer be

one has not found a total matching for one or more children rgjeyant. The x-dag representation of tRep is used to
of v, then there does not exist a total matching at which determine if an element is relevant.

v is mapped te. An element that does not match any x-node is not rel-
One can extend this algorithm to handle general x-dagsevant trivially since it cannot participate in any matching.
as long as we ensure that when the algorithm constructs toMoreover, even some elements that match an x-node can

tal matchings from children total matchings, the consistency be discarded. Consider the start element eventifgr,.

of the assignments to join points is checked. To avoid this This element matches thi x-node in the x-dag, but is not
verification step, we use the x-tree rather than the x-dag aselevant because it has @oancestor element in the docu-
the basis for constructing total matchings from subordinate ment; there is no total matching in whidls 3 participates
total matchings. The algorithm cannot, however, be appliedthat assigns an elemento z such that: is an ancestor of

to x-trees directly — itis not always possible to determine at 1¥; ;. Since the input document is processed in a depth-
the end of an elementthat matches x-node € 7 whether  first manner, by the time the start element eventfar; is
there exists a total matching at wherev is mapped tc. processed, the algorithm has already received start element
For example, consider the x-tree in Figure 3a. tande’ events for all ancestors 6¥; 5 in the input document. It

be elements in the document that mawhandZ respec-  can, therefore, determine if ttv¢ element hay andz an-
tively such that’ is an ancestor of. When the event cor-  cestors in the document, and discard thelement if does
responding to the end of elemenis seen, the absence of a not satisfy these constraints.

total matching az does not imply the non-existence of a to- To be more precise, an elementthat matches a x-

tal matching atv in whichW is mapped te. Itis possible  nodew is relevant if and only if there exists a matching,
that an element” (which is a child of element’) matching m : V' — E’, whereV’ is the set of x-nodes containing

V will be seen Iater, which will contribute to a total match- v and all ancestors af in the X-dag, and?’ is the set of
ing atZ, and consequently, to a total matchinghat document elements containirgand all ancestors of in

Our final algorithm uses a subtle combination of both the the document, such that if,,v; € V' are connected by
x-tree and the x-dag to compute total matchings at the root.an edge, therfv;, m(v1)) is consistent with(vy, m(v2)).
The x-dag is used to filter out the relevant events from the For efficient determination of whether the element associ-
input event stream and determine when matchings stored atited with a start element event is relevant, we maintain a
the children of an x-node can be safely discardede. are looking-for set, L. The members of are(v € Vp, level)
guaranteed not to contribute to a total matching.afThe pairs, where level may be an integersorThe looking-for
x-tree is used as the basis for determining when and whatset £ is maintained such that if the elemeniassociated
to compose to avoid the expensive verification of join point with a start element event is relevant, then, and only then,
assignments in the x-dag. In this section, we shall describethere exists(v,level) € L such thatlabel(v) = tag(e),
these two components of our algorithm and a data struc-and eitherlevel = level(e) or level = *. Integer lev-
ture called thematching-structurewhich represents a set els are used to enforce the constraint thatuif, e;) and
of matchings, in greater detail. The first component deals (v2, e2) are consistent and ifixis(vy,v2) = child, then
with determining when to start looking for a total matching level(es) = 1+ level(eq). L is initially set to{(Root, 0)}.
at a x-node. The second component is regarding the com- For example, at the end of Step 3 in the execution of
position of matchings to construct a matching-structure thatthe algorithm on the XPath expression in Figure 3 on the
represents the set of all total matchings at the root. document of Figure 2 (See Table 2), the looking for set is



Table 2. Walk through of evaluation of XPath of Figure 3 on document of Figure 2. S (E) A,,, denotes
the start (end) element event for an element, A, ,. The Looking-for set column shows £ at the end of
processing the event.

Event Matches Comments Looking-for Set
1 S/ Rooty,s (Root,0) Add (Y,=*) and(Z,x) to L, sinceRoot matches their ancestors in the{(Y, %), (Z, )}
x-dag.
2 S Xia Discarded. {(Y,%),(Z,%)}
3 S VYo (Y, %) Add (U, 3) to £ becauseJ is connected to¥ by a child edge in the {(Y,%),(Z,%),(U,3)}
x-dag, andy is matched at level 2. Do not adtl to £ because there is
no element that matches #sparent in the x-dag. Continue looking for
(Y, x) because any element with t&gn the subtree of this element will
also be a candidate for matchilg
4 S Wsg3 Discarded. ThidV is not relevant because it has no matchCinStop  {(Y, ), (Z, *)}
looking for (U, 3) because until the end of this elemdat)el > 3
5 E:Wsg3 Discarded. Start looking fofUU, 3) again since théevel is back at. {(Y, %), (Z,%),(U,3)}
6 SZigs (Z, %) Start looking for(V, 4) since we have relevant elements matctirand  {(Y, %), (Z, %), (W, %), (V,4)}
Root in the x-dag. Look for it at level 4 because th#&, V') edge is
labeledchild. Stop looking for(U, 3)
7 S Vsa (V,4) Stop looking for(V, 4) because until the end of this elemélatyel > 4.  {(Y, %), (Z, %), (W, )}
8 E:Vsu (V,4) There is a total matching &, My 5. This matching-structure is propa- {(Y, *), (Z, x), (W, %), (V,4)}
gated to the appropriate submatching\df; 4, the only parent-matching
of My, 5. Start looking for(V, 4) again since théevel is back at3.
9 S: Ve 4 (V7 4) {(Yv*)v(Z7*)7(VV7 *)}
10 E: Vs (V,4) Again, My 5 is added to the appropriate submatching\dt; 4. {(Y, %), (Z, %), (W, %), (V,4)}
11 S Wiy (W, %) {(Y,%),(Z, %), (W, %)}
12 S:Wss (W, %) {(Y, %), (Z, %), (W, %)}
13 E:Wsps (W, %) W in the x-dag has an outgoirancestor edge. All child-matchings {(Y, x), (Z,*), (W, )}
of Mg, in this case M z 4, are propagated into the appropriate sub-
matching of Mws. All submatchings ofM 7 are now non-empty.
My, is propagated to1y,o
14 E:Wry (W, %) As above My, 7 is propagated toUy 2. {(Y, %), (Z, %), (W,=)(V,4)}
15 E:Zu3 (Z, %) Z has an incoming edge labeladcestor. SinceM z 4 is satisfied, no {(Y, *), (Z,*)(U, 3)}
clean up is necessary.
16 S Ugs (U,3) {(Y,%),(Z,%)}
17 E:Ugs (U,3) The total matching dt), M9 is propagated tdMy . {(Y,%),(Z,%),(U,3)}
18 E: Y32 (Y, %) My is satisfied since both submatchings, correspondirld &mdW  {(Y, %), (Z,*)}
are non-empty. Propagately,2, and we have a total matchingRoot.
19 S Y1072 (Z,*) {(Y,*),(Z,*),(U, 3)}
20 S:Zii3 (Z,%) {(Y, %), (Z,%),(V,4), (W, *)}
21 S W12,4 (W, *) {(Yv *)7 (Z7 *)7 (W’ *)}
22 E:Wi24 (W, %) SinceW has an outgoing edge labeledcestor, add Mz 11 optimisti-  {(Y, %), (Z, %), (W, %), (V,4)}
cally to the appropriate submatching.®fw,12. Since this matching is
now satisifed, it is propagated 1oty 10.
23 E:Zii3 (Z, %) Mz 11 is not satisfied — the submatching féis empty. Undo the prop- {(Y, *), (Z, %), (U, 3)}
agation ofMz 11 to Mw,12. SinceMw,12 now is no longer satisfied,
undo the propagation froov 12 to My 10.
24 S Ujszz (U,3 {(Y,%),(Z,%)}
25 E:Uizgs (U,3) The total matchingM 13 is propagated toUy 10. {(Y,%),(Z,%)}
26 E:Yio,2 (Y, %) My,10 is not satisfied. The submatching f@f is empty. Nothing is {(Y,*),(Z,*)}
propagated.
27 E:Xia Discarded. {(Y,%),(Z,%)}
28 E:Rootyy (Root,0) There is one entry in the submatching correspondingrtaMy,2. {(Root,0)}

MRoot,0 IS satisfied.




{(Y,%),(Z,*),(U,3)}. (Y,x) is in the looking for set be-
cause if the next start event were for an elemenuith tag
Y, there would exist a matching : V! — E’ = {Root —
Root, Y — e}. (Z, ) is in the looking for set for a similar
reason. (U, 3) is in the looking for set because if the next
start element event for element, matched it, we would
have a matchingn : V' — E’ = {Root — Root,Y
Y>2,U +— e}. e would have to be at level 3 for this match-
ing to be consistent, because there is an edge lakélied
betweeny andU in the x-dag. We do not, however, have
entries forw or V in the looking for set, because if the next

attempt to determine iM,, . represents a total matching at
v. If there is a total matching, we inset, . into the ap-
propriate submatching of its parent-matchings. This prop-
agation may be optimistic in that one may have to undo
the propagation as more events are processed. Let us first,
however, consider the simpler situation where no cleanup of
propagation is necessary, when the x-tree does not contain
any edges labeleahcestor or parent. This corresponds to
Rxp's that use only thehild anddescendant axes.

When the x-tree contains ontjsild anddescendant con-
straints, any total matching atv, wherem(v) = e maps

start element event matched either of them, we could notall x-nodes in the subtree af to elements that lie in the
construct an appropriate matching (we would not have andocument subtree af. Since the total matching is con-

appropriate assignment to thex-node).

4.2 Matching-Structure

tained within the subtree af, by the time the end element
event fore is seen, we can determine conclusivelyf, .
represents a total matching-at This leads naturally to an
inductive approach to building matchings. For an end ele-

The second part of the algorithm constructs a data struc-ment event, whereM, . is a matching-structure:

ture called amatching-structuravhich is a compact repre-
sentation of all total matchings Boot of the Rxp relative

to the input document. A matching-structuset, ., is as-
sociated with x-node, and represents a set of matchings
atv in which v is mapped to the document elementThe
matching-structuré\1,, . additionally contains a submatch-
ing for every child ofv in the x-tree. A submatching at
child w of v is a (possibly empty) set of matching-structures
atw. For any matching-structur#1,, ., in the submatch-
ing of M,, . atw, we require thatv, e) be consistent with
(w, e’). A matching-structure\, . is said to be garent-
matchingof a matching-structuré,, .- if v is a parent of

w in x-treeT and(v, e) is consistent witf{w, ¢’). If M, .

is a parent-matching o¥,, ., then we say also that,, ./

is achild-matchingof M, ..

Figure 4 shows the matching structure at the end of pro-
cessing the XPath of Figure 3 on the document in Figure 2

and the four total matchings Rioot. The result is obtained
by taking thew projection, that iW7 4, Wg 5}.

4.3 Composition of Matchings

1. If v is a leaf in the x-tree,M,, . represents a total
matching atv by definition ¢ has no subtrees). We
propagateM,, . to the appropriate parent-matchings.

2. If v is not a leaf M, . represents a total matching at
v, if and only if, all submatchings are non-empty. Oth-
erwise, no total matching exists. If we had found ap-
propriate total matchings for each of the children of
v in the x-tree, they would have been propagated to
M, . by the time the end element event fois pro-
cessed. As above, i#1, . represents a total matching,
we propagate it to all appropriate parent-matchings.

If at the end of processing the document (when we receive
the end element event fd&Root), yaos finds that all the
submatchings aMgoet, root @re NoON-empty, we have a total

'matching aRoot.

The presence adncestor andparent edges in the x-tree
complicates this process because one may not be able to
determine conclusively whether a total matching exists for
aM, . by the end of element For example, in Figure 3a,
one might not find a total matching for the subtree rooted

We assume from now on that all events corresponding toat z, until after one sees the end of an element matching
elements that are not relevant have been discarded. WheRy. The propagation process remains the same, except for

xaos processes a start element event for an eleraéinat
matches a x-node,, it creates a matching-structur/,, .,
to represent the match. Note thatmay match more than
one x-node in the x-tree; a matching-structure is created for
each such match. The submatchings for these matching-
structures are initially empty. Agaog processes events,
it stitches together these matching-structures, so that when
the end of the document is seefroot,Root €NCOdeES all
total matchings alRoot in the document.

The key step in this process fsopagation At an end
element event for an elemeathat matches x-node, we

an x-node that has an incoming or an outgoing edge labeled
ancestor or parent. For aM,, ., the modified steps are:

e If there is an outgoing edge, v') labeledancestor or
parent, and the submatching far is empty, we can-
not assert that there exists no total matching.atve,
optimistically, propagate each child-matchidg, .,
into the appropriate submatching #f(,, .. We then
proceed as before. If all submatchings are satisfied,
M, . is propagated to its parent-matchings. For an
example, please refer to Steps 13 and 22 in Table 2.



Total Matchings at Root

Z43

v

[Root— 0,Z — 4, Y —2,U +— 9,V =5 W — 7]
[Root— 0,Z — 4,Y — 2,U +— 9,V = 5, W — §|
[Root — 0,Z—4,Y —2 U~ 9V —6W—T
[Root— 0,Z — 4, Y — 2,U +— 9,V — 6, W — §]

[ Vs ] [ Vea ] Solution: {W7 4, Ws 5 }

Figure 4. Matching Structure at the end of processing the XPath of Figure 3. Boxes represent
matching-structures. For a matching-structure, M, ., the top half of the box shows the element
that matches wv. Each slot in the bottom half of the box corresponds to a submatching, which is

represented as a list of pointers to the child matchings.

e If there is an incoming edgé&’, v) labeled ances-
tor or parent, then M, . may have been propagated
optimistically to its parent-matchings. If we can de-
termine conclusively thaM,, . cannot represent a to-
tal matching at, we undo the propagation o¥1, .
The removal ofM,, . from a submatching of a parent-
matching M, ., may result in that submatching be-
coming empty —M, ./ is no longer a total match-
ing atv’. We then recursively undo the propagation
of M, .- from its parent-matchings. For an example,
please refer to Step 23 in Table 2.

4.4 Emitting Output

build matching-structures for many of the x-nodes in the
x-tree. For example, if the x-tree contains a subtree that
does not contain the output node, it is not necessary to store
matching structures for the nodes in that subtree. It is suffi-
cient to store a boolean value as to whether a total matching
exists at that subtree. Furthermore, often it is not neces-
sary to wait until the end of a document to emit output, but
emit elements more eagerly. A detailed discussion of these
optimizations is beyond the scope of this paper.

5.2 Or expressions

Or expressions can be handled by converting an XPath
expression into an equivalent one in “disjunctive normal

At the end of processing the document, if the submatch- ¢5p, » yaos can be run on each of the operands of the
iNgS 0f MRoot,Root @re all non-empty, we have at least one o _|evel 'or independently. While this process may be ex-

total matching aRoot. The output is emitted by traversing
the matching structure, and emitting an elemewhen we
visit M, ., wherew is the output x-node of th&xp. For
example, in Figure 4, we outpdi’; » when we first visit
My 7 andWs 5, when we first visitMyy g.

5 Extensions

ponential in terms of the size of the XPath expression, we
do not expect this to be an issue since XPath expressions
are, in general, of small size.

5.3 Multiple Outputs

One extension of XPath expressions is to allow for more
than one output node in an XPath. If we use “$” to mark

such as optimizations, handliney expressions, multiple

outputs, and intersections and joins of XPath expressions.

5.1 Optimizations

all (a,b) pairs in an input document such thais the par-

ent ofb. These expressions have use in the compilation of
XQuery and SQLX statements [13]. Our algorithm can han-
dle these extended expressions easily. Given an extended
XPath expression in this form, we generate an x-dag in the

We have described our algorithm in terms of storing all same manner as before, except that it may now contain more
total matchings, and subsequently, traversing the matchinghan one x-node marked as an output node. Our matching
structure to emit elements. We do not, however, need tosemantics are independent of the number of output nodes



in the x-dag, and the matching structure allows easy pro-
duction of the resultant tuples — the only change is in the
output traversal.

5.4 Intersections and Joins of XPath expressions

The x-dag representation can also be viewed as a rep-
resentation of the intersection of two XPath expressions.
For example, the x-dag of Figure 3b can be interpreted as
IYTUYIW N ZIVIIIW. In other words, it returns alv ele-
ments that are in the solution set of both XPath expressions
when they are evaluated on an input XML document.

An x-dag with multiple output nodes, derived from an
extended XPath as described previously, can also be used
as a representation for joins of XPath expressions. For ex-
ample, assume that the x-nodes,w andV were marked
as output nodes in Figure 3b. The x-dag then could be
interpreted either as eithéfy[$U]/$W[ancestor::Z/$V] or
IISUNISW <y 1ZISVI/ISW.

Since these joins and intersections can be expressed as an
x-dag with multiple output nodes, as mentioned previously,
we can handle these expressions in our framework. The
x-dag representation of intersections and joins allows these

expressions to be evaluated in a single pass during pars-

ing. In contrast, TurboXPath [13] advocates a more com-
plex two-phased approach in which the burden of evaluating
the intersections or joins is shifted to a backend database.

6 Experimental Results

The xaog algorithm examines each element event ex-
actly once and the processing of an event involves only

constant-time operations. We would, therefore, expect the

execution time of¢«os algorithm to be linear in terms of the
input document size. Furthermorggos stores only those
elements relevant to the calculation of the final solution. We
would, therefore, expect thexog algorithm to show better
memory utilization than Xalan [2], which stores the whole
document in memory. In this section, we provide experi-
mental results that validate these claims. We, first, provide
results using documents generated by XMark [15]. To gain
further insight into the relative performance gfios and
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Figure 5. Time in seconds on XMark-
generated documents:  yaos versus Xalan.
The XPath expression executed is Mis-
titem/ancestor::category//name

Table 3. Number of elements discarded by
xaos in processing of XMark-generated doc-
uments

Scale Doc. Size Elements % Discarded
.03125 3.49 MB 52069 99.8 %
.625 6.88 MB 103999 99.8 %
125 13.86 MB 210538 99.8 %
.25 27.87 MB 417160 99.8 %
5 55.32 MB 832911 99.8 %
1 111.12 MB 166311 99.8 %
2 22290 MB 3337649 99.8 %
4 446.71 MB 6688651 99.8 %

These correspond to documents ranging in size from 3.5
MB to 446 MB. We then evaluate the XPath expression,
INistitem/ancestor::category//name on these documents, us-
ing both yaos and Xalan. Figure 5 reports the results of
these experiments.

Note that Xalan fails to complete on the two largest doc-

Xalan, we also run experiments using a custom XPath anduments (approx. 222 MB and 446 MB), and furthermore,

XML document generator.

All experiments were run on a 550 Mhz, 256 MB, Pen-
tium 11l box, running Linux 2.4.x«os was written in C++,
and we use Xalan-C++ 1.3.1. Boflwogs and Xalan were
compiled using gcc -O (version 2.92).

6.1 Experiments using XMark

Using XMark, we generated documents with scale fac-
tors .03125, .0625, .125, .25, .5, 1, 2, and 4, respectively.

10

that there is a sharp spike in going from 55 MB to 111
MB. These effects can be attributed to the memory require-
ments of Xalan (the spike is the region where Xalan ex-
hibits thrashing behavior in memory). On the other hand,
xaos scales linearly, as is expected. Table 3 reports the
number of elements discarded by the algorithm as not being
relevant. As can be seen from the results, a very small per-
centage of elements in a document (less than .2 %) is stored
and processed, resulting in a signficant reduction in storage
requirements.



6.2 Custom XPath generator 5 %
' A

We use a custom XPath generator to generate a set of 40 ',//

random XPath expressions (of size 6 — six node tests inthe P

expression), and for each XPath expression, we generate o 30 L

a random XML document based on the XPath expression. E

The generated XML document has the characteristic that, 2

for large document sizes, the XPath expression will have 10 4 - ¢ - Xalan

many matches (and near matches) in the document. — 4 -Xaos (DOM)
We use two versions of«og in our comparison. The 0 ‘ ‘ ‘ ‘ —m—Xaos

first, yaoc(SAX), uses the Xerces SAX parser [3], which 20000 120000 220000 320000 420000 520000 620000

is also used by Xalan. To factor out the costs of parsing Number of Elements

and building a tree from the time to evaluate an expression,
we also implemented a version gfvos on top of Xalan.

Yaos(DOM) builds an internal version of the input docu-  19ure 6. Overall Time in seconds:  yaos ver-

ment in the same way that Xalan does. We then traverse this sus Xalan
tree in a depth-first fashion and generate events that a SAX
parser would. By subtracting the parsing and tree-building 18
time from the overall time, we get an accurate measure of 16
the time spent in evaluating the expression. 14
We vary the XML document size from 20,000 elements 12
to 640,000 elements (200K - 6.7 MB). At each document 3 4 %
size, we execute 10 runs of the following: § 8 ] e
1. Generate an XPath expression. j | 7 - =" A
3 ’;/‘r—”' - ¢ - Xalan
2. Generate an XML document from the XPath expres- 2 PP e —Aa— Xaos (DOM)
sion. o WL ‘ : : : :
20000 120000 220000 320000 420000 520000 620000
3. Evaluate the XPath expression usjngos and Xalan. Number of Elements

We report the average execution time and the standard

deviation of the 10 runs at each XML document size. Figure 7. Searching Time in seconds:  xaos

versus Xalan
6.2.1 Overall Execution Time

We first compare the performance gfroc to that of us-  Thjs is mainly due to avoiding unnecessary traversals of the
ing the Xalan XPath engine (SimpleXPathAPI). Figure 6 tree. Note that the difference in standard deviation is much
plots the average execution time (average over the 10 runsypore apparent in this graph. The cause of this high vari-
at each document size) versus document size (in number ofnce is the bimodal behavior of the Xalan XPath engine.
E|ement5). The error bars represent the standard deViatiOl@n “good” XPath expressionS, where it does not perform
from the mean. All times include the cost of parsing. many unnecessary traversals, the performance of the Xalan
As can be seen from the graptoc(SAX) is roughly  Xpath engine is similar to that of ours. On “bad” XPath ex-
25% faster than the Xalan XPath engine. With documents pressions, such as those involving the use of the descendant
of size 640,000 elements (6.7 MB) the average times areaxes, its performance can be four times worse. Our XPath
xaog: 39.0 seconds, Xalan XPath: 52.28 seconds. Note theengine’s performance, however, is linear in the size of the
difference in the standard deviations between the two linesxmL document and shows little variance.
(the error bars in the plot). Whereas the standard deviation
for yaoc is relatively constant, that of Xalan XPath is fairly

high. We shall discuss this behavior in the next section. 7 Summary

We have presented a novel algorithm for handling back-
ward and forward XPath axes in a streaming fashion. Our
Excluding parsing costs, the performance of our XPath en-experiments reveal that significant performance benefits can
gine is more than twice that of the Xalan engine (Figure 7). be obtained by using thgaogs algorithm for evaluating

6.2.2 Comparison Excluding Parsing Times

11



XPath expressions on XML documents in a streaming fash-A  Rules for Building an X-tree

ion.

Furthermorey«aos has significantly lower storage re-

quirements.
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x-forest resulting fromStep,, and T, refer to the
x-forest or x-tree resulting fromPredExzpr. The
x-forest for Step is obtained by merging the output x-
node of7T; with thecontext x-node ofT5; (if any), and
merging the root x-nodes &f; and7;. The output
x-node ofT} is designated as the new output x-node.

RelLocPath ::= Step’/' RelLocPath, Let T; and
T, refer to the x-forests obtained fronbtep
and RelLocPath, respectively. The x-forest for
RelLocPath is obtained by merging the output
x-node of T} with the context x-node ofT», merging
the root x-nodes ofl; and 75, and designating the
output x-node ofl; as the new output x-node.

PredExpr ::= RelLocPath and PredExpry Let T}
and T, refer to the structures obtained froRelLoc-
Path and Pred Expr, respectively. The x-forest for
PredEzpr is obtained by merging theontext of T
with the context of 75 (if any), and merging the root
x-nodes ofl’} andT5». There is no output vertex.

PredExpr ::= AbsLocPath and PredExpr, Similar to
the previous case.

AbsLocPath ::=' /' RelLocPath The x-tree is obtained
by mergingRoot andcontext x-nodes of the x-forest
obtained fromRel LocPath.



