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ABSTRACT

Several design patterns are defined to make systems more flexible and extensible. The main goal of this work is
to show how the representation of this kind of patterns, which we refer to as configuration design patterns, can be
vastly improved through extensions to the diagrams used to model them. An extension to the UML design
notation to better represent configuration patterns is proposed and ill ustrated through examples of well -known
design patterns and real-world frameworks. The paper also shows that the proposed representation can be more
easily mapped to new implementation techniques such as Aspect-Oriented Programming (AOP) and Subject-
Oriented Programming (SOP).

KEY WORDS: configuration design patterns, pattern representation, UML, new implementation techniques,
frameworks.

1. INTRODUCTION

Configuration design patterns are patterns used to make systems more flexible and extensible. Most of the design
patterns proposed in [11] can be classified in this category1. This work addresses the problem of configuration
design patterns representation. Based on our experience applying design patterns to structure complex
frameworks [5, 8, 9] and teaching courses on patterns [6] some conclusions were driven:

• Configuration design patterns need to be instantiated;

• The pattern form used to represent them is based on OOADMs diagrams, such as OMT [23] and UML [24]
class and interaction diagrams;

• Current OOADMs do not provide elements and diagrams to represent instantiation, which is a key concept
behind configuration patterns;

• Several design patterns are complex design structures that may lead to very tangled diagrams, especially
when several patterns are combined in a system.

Based on these premises, we have developed an extension to the UML notation that enhances the representation
of configuration patterns by: (i) explicitly representing the pattern instantiation, and (ii ) being abstract enough to
simpli fy the diagrams and allow several implementation approaches to be used. The solution was based on the
UML extensibilit y mechanisms [24].

The rest of the paper is organized as follows: Section 2 shows how three well -known design patterns (Strategy,
Composite, and Visitor) [11] are represented first in standard UML and then by the proposed notation. This
section also compares both representations highlighting the benefits of our approach.  Section 3 details the
solution describing the syntax and semantics of the new elements. Section 4 shows how the solution can be
applied to real-world frameworks that use several configuration patterns. Section 5 describes an approach to map
the proposed pattern representation into new upcoming implementation technologies such as AOP [15] and SOP
[12]. Section 6 describes related work while Section 7 concludes the paper and outlines our future research
directions.

2. EXAMPLES OF DESIGN PATTERN REPRESENTATION

This section presents some well -known patterns using standard UML diagrams, discuss this representation, and

                                                          
1 Normally, the Singleton, Adapter, Façade, Flyweight, Interpreter, and Memento design patterns are the only
ones from the 23 patterns presented in [11] that will not be classified as configuration patterns. However, this
classification is a littl e bit subtle and depends upon the pattern use.
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shows how it can be enhanced by adding new elements to the underlying design notation. Section 3 details the
proposed solution.

2.1 STRATEGY

Figure 1 ill ustrates the structure field of the Strategy design pattern [11] using standard UML. The idea behind
this pattern is to encapsulate possible variations of a given algorithm, allowing the system to invoke the more
appropriate algorithm depending on a given context.

Context

contextInterface()

Strategy

+algorithm()

strategy

1

ConcreteStrategy

+algorithm()

Figure 1. Strategy class diagram in standard UML

The user that wants to use Strategy has to implement the set of possible algorithms in Strategy subclasses
(ConcreteStrategy.algorithm()). This is exactly the pattern instantiation step. The necessity of instantiation step
implies that Strategy is a configuration pattern. The understanding of instantiation step is essential for applying
Strategy, however Figure 1 does not give any information about it.

Figure 2 shows an extended version of standard UML class diagrams, where the pattern hot-spots [19, 25] are
explicitly represented. A hot-spot is defined here as the aspect of the pattern that may vary, depending on the
pattern instantiation. In this case, the method algorithm() is a hot-spot as indicated by the tagged value variable,
which means that algorithm() implementation may vary. This representation precisely captures the idea behind
Strategy, which is to encapsulate algorithm variations. Another difference from this diagram and the standard one
presented in Figure 1 is that the class ConcreteStrategy is highlighted, indicating that it is an application class.
Application classes, differently from the standard ones, exist only after the pattern is instantiated. The highlighted
classes are the ones that have to be added to the system to implement a new pattern , and are the ones that the
user should focus when configuring the system. Considering the Strategy pattern, several  classes may be
provided to implement the different algorithms that are used within that pattern .
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Context

contextInterface()

Strategy

+algorithm()

{ variable}

strategy

1

ConcreteStrategy

+algorithm()

{ incomplete}

Application
class

Figure 2. Explicit representation of the pattern hot-spots

The incomplete constraint indicates that more subclasses of Strategy may be created. Incomplete is provided by
the standard set of UML constraints [24].

Although Figure 2 is more expressive than the standard one regarding the pattern instantiation, it can still be
complemented with the instantiation diagram presented in Figure 3. Currently none of the existent OOADMs
provide diagrams that have the similar semantics to the instantiation diagrams described here. The idea is to
define the steps that have to be performed during the pattern instantiation in a visual process language.
Instantiation diagrams are defined using the elements provided by UML activity diagrams, which are the ones
used to represent workflow models.

Subclass(Strategy, ConcreteStrategy)

Implement(ConcreteStrategy, algorithm, Imp)

Strategy Instantiation

Figure 3. Instantiation diagram for Strategy

Figure 2 and Figure 3 complement each other and together provide a more expressive representation for the
Strategy pattern than the one showed in Figure 1. The following subsections show how other two configuration
patterns described in [11] can be better represented using the same concepts. Section 3 generalizes the solution,
describing the syntax and semantics of the extensions we made to the UML notation.

2.2 COMPOSITE

Figure 4 ill ustrates the Composite design pattern [11] class diagram in UML. Composite provides a uniform way
to create object trees that represent part-whole hierarchies. The idea behind this pattern is to make composite
object are independent form its components. Thus, the pattern allows new kinds of components to be added to the
system without disturbing the behavior of the composite objects.
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Leaf

+operation()

Component

+operation()

+add()

+remove()

+getChild()

children

*

Composite

+operation()

+add()

+remove()

+getChild()

Figure 4. Composite UML class diagram

A user who wants to apply composite has to define the set of components used within the intended pattern .
Another important point is that this set of components may evolve during the system li fetime through the addition
of new leaf classes. Different instantiations of the pattern may have a different set of leaf classes. Figure 5 and
Figure 6 explicitly ill ustrate this instantiation step.

Leaf

+operation()

Component

+operation()

+add()

+remove()

+getChild()

children

*

Composite

+operation()

+add()

+remove()

+getChild()

{ incomplete}

Application
class

Figure 5. Highlighting the configuration step
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Subclass(Component, NewLeaf)

Implement(NewLeaf, operation, Imp)

Composite Instantiation

Figure 6. Composite pattern instantiation diagram

2.3 VISITOR

This design pattern adds extensibilit y to a system, allowing the definition of new operations without changing the
interface of the class on which they operate. Figure 7 shows its UML class diagram. In order to add new
operations to the system a user that applies Visitor should create new classes in the Visitor hierarchy and
implement the desired operations on the newly created classes.

<<interface>>

Visitor

visitConcreteElement()

ConcreteVisitor

+visitConcreteElement()

<<interface>>

Element

accept(Visitor)

ConcreteElement

+accept(Visitor)

+operation()

Figure 7. Visitor UML class diagram

Figure 8 extends the standard class diagram by identifying the pattern hot-spot and highlighting the application
classes, which are the ones that implement the Visitor interface. The hot-spot is identified by extensible tagged
value in the method container of the ConcreteElement class. This representation indicates that new methods may
be added to the element classes2. The applicabilit y of the incomplete constraint is enlarged here to also
encompass the realization relationship, meaning that new classes that implement a given interface (Visitor in this
case) may be added to the project during instantiation time. The corresponding instantiation diagram is presented
in Figure 9.

                                                          
2 This tagged value is just representing the semantics of the pattern, since in the Visitor implementation new
methods are not added to ConcreteElement classes directly. However, the idea behind the pattern is to “extend”
the class interface and the “extensible” tagged value documents that precisely.
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<<interface>>

Visitor

visitConcreteElement()

ConcreteVisitor

+visitConcreteElement()

<<interface>>

Element

accept(Visitor)

ConcreteElement

{extensible}

+accept(Visitor)

+operation()

{ incomplete}

Application
class

Figure 8. Identifying Visitor hot-spots

NewClass(ConcreteVisitor)

ImplementInterface(ConcreteVisitor, Visitor, Imps)

Visitor instantiation

Figure 9. Visitor pattern instantiation diagram

3. PROPOSED SOLUTION

As shown by the design patterns described in section 2, the proposed solution for enhancing the configuration
patterns representation extends UML by:

• Changing the class diagrams to explicitly identify pattern hot-spots and application classes;

• Defining instantiation diagrams, which represent the pattern instantiation process.

To extent UML class diagrams a new stereotype was created, Application class, and two new tagged values were
defined, variable and extensible. Finally, the applicabilit y of the incomplete constraint was enlarged to
encompass dependency relationships as well . Table 1 summarizes these elements and defines their semantics.

The instantiation diagrams are a visual representation of a process language. In the case of isolated patterns the
instantiation diagrams tent to be simple, as the ones showed in section 2, however for frameworks that combine
several patterns and have special domain specific requirements these diagrams can become quite complex, as will
be shown in section 4.

Element Type Applies to Semantics

Application
class

Class

Stereotype Class Classes that exist only in the pattern . Generally,
application classes model the varying concept
encapsulated by the pattern. New application classes are
defined during the pattern instantiation.
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Variable Tagged value Method Means that the method implementation is the varying
concept that the pattern encapsulates. Or in other words,
the method implementation depends on the pattern
instantiation.

Extensible Tagged value Method and
Attribute
Containers

Means that the class interface (methods, attributes, or
both) is varying concept that the pattern encapsulates. Or
in other words, the class interface depends on the pattern
instantiation: new methods and attributes may be defined
to extend the class functionality.

Incomplete Constraint Generalization
and
Realization

Almost the same meaning that in standard UML but
applies also to dependency relationships. Incomplete
means that new classes that satisfy a given relationship
(generalization or realization) may be added during the
pattern instantiation

Table 1. Summary of the new elements and their meaning

Instantiation diagrams are represented using the syntax defined by the UML activity diagrams, where each action
state defines a transformation over the pattern design [2]. The syntax of the underlying transformational language
is PROLOG-like and its semantic is quite intuitive. Some transformation examples are:

• Subclass(Superclass, NewClass): NewClass is a new class added to the system that is a subclass of
Superclass. The user has to specify the name of newClass;

• Implement(Class, Method, Imp): asks the user to provide a concrete implementation Imp for the method
Method of class Class;

• NewClass(Class): creates a new class in the system. The pattern user has to provide the class name.

The complete language is a variation of the one proposed in [2] and can be found in [8].

4. DOCUMENTING FRAMEWORKS

This section presents two case studies that show how frameworks that assemble several configuration patterns
can also be better documented by the proposed UML-extended notation.

4.1 WEB-BASED EDUCATION FRAMEWORK

ALADIN [9] is a web-based education framework that is currently being used to support the development of
Web-based applications, such as AulaNet [5] (http://aries8.uwaterloo.ca/aulanet) and OwlNet [1]. We estimate
that the use of ALADIN increases productivity by a factor of 3.

Figure 10 ill ustrates a design model for part of the ALADIN framework. It represents a student subsystem, in
which the user has to select the desired course (method selectCourse) before he can browse its content, which is
displayed by method showContent. Figure 10 uses the UML extended representation to explicitly represent the
framework hot-spots:

• Method selectCourse is a variation hot-spot, which means that several selection mechanisms may be
implemented within the framework. This means that each  of ALADIN must define its own course selection
mechanism. This hot-spot was implemented by the Strategy design pattern;

• Class ShowCourse might have its interface extended by the addition of new methods. This allows different s
of ALADIN to configure its own set of displaying methods, avoiding defining in the framework classes
methods that might be unwanted for some framework s. This hot-spot was implemented by the Visitor design
pattern. TipOfTheDay, which shows start-up tips, might be a feature wanted by some framework s, as
shown in Figure 10.
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<<interface>>

Visitor

visitShowCourse()

TipOfTheDay

+visitShowCourse()

ShowCourse

{ extensible}

+selectCourse()

{ variable}

+showContent()

+accept(Visitor)

SelectStrategy

+select()

select

1

ConcreteSelect

+select()

Figure 10. Modeling frameworks

Figure 10 is representing the framework architecture in a more expressive way than if standard UML was used.
The identification of the hot–spots by the tagged values extensible and variable indicate what are and the exact
meaning of each of the hot-spots. The application classes indicate what parts of the system are used to instantiate
the hot-spots.

Figure 11 presents the instantiation diagram that models how the ALADIN should be instantiated, considering
only the portion of the framework described in the example. Note that the extension of ShowCourse interface is
optional, since it may not be required by a given framework . On the other hand, another  may want to extend
ShowCourse with several methods. The selectCourse hot-spot has to be configured by every framework  and
only one selection algorithm is allowed per .

NewClass(ConcreteVisitor)

ImplementInterface(ConcreteVisitor, Visitor, Imps)

Subclass(SelectStrategy, ConcreteSelect)

Implement(ConcreteSelect, select, Imp)

ALADIN Instantiation

Figure 11. ALADIN instantiation process

Figure 10 and Figure 11 complement each other, and together they completely specify the ALADIN
configuration phase. It is very important that framework developers provide documentation that describes what
parts of the system should be changed to create a valid framework . It is very unlikely that a framework user will
be able to browse the framework code, which generally has complex and large class hierarchies, and write the
appropriate code if the framework is not well documented. These diagrams address this problem.

4.2 UNIDRAW FRAMEWORK

Unidraw [26] is a graphical editor framework that allows the construction of domain-specific editors. Different
domain-specific editors normally require new graphical components. Unidraw allows the definition of these new
components by the creation of composite components (GraphicComp subclasses) from the set of primitive
components (Graphic subclasses) and composite components previously defined in the system.
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Figure 12 ill ustrates this design structure. During instantiation, new subclasses of Graphic and GraphicComp
may be defined. Graphic subclasses implement the framework primitive components while GraphicComp
subclasses define composite components. In this example, the composite components are AND, OR, and NAND
gates used to model electrical circuits in schematic capture systems.

GraphicComp

{ incomplete}

Application
class

And

Application
class

Nand

Graphic

{ incomplete}

Application
class

Line

Application
class

Or

* *

Figure 12. Unidraw Graphic-GraphicComp design structure

However, there is a balance between reuse and runtime performance that the Unidraw user should take in account
when defining a new graphic component [27].

1. If he wants maximal reuse, a new component might be defined as a composition of existing GraphicComp
subclass. The Nand component ill ustrated in Figure 12 uses this approach. This option may have
performance problems due to the visualization approach adopted by the framework;

2. If he wants maximal performance, a new component should be described as a new primitive component
(Graphic subclass). The Or component showed in Figure 12 uses this approach. This option will require
much more implementation effort, since nothing is being reused;

3. An intermediate solution is the definition of a new component by a custom composition of existing Graphic
subclasses, as the case of the And component (Figure 12).

The instantiation diagram showed in Figure 13 formally presents these instantiation options to the framework
user. Note that an application builder that guides the user in the instantiation of new Unidraw applications may be
defined based on these diagrams. We are now investigating how builders can be derived from the framework
documentation [8].

Subclass(Graphic, NewComponent)

Unidraw Instantiation

[max performance]

[max reuse][intermediate solution]

Subclass(GraphicComp, NewComponent)

Aggregates(NewComponent, Graphic, multiple)

Implement(NewComponent, Draw, Imp)

Subclass(GraphicComp, NewComponent)

Aggregates(NewComponent, GraphicComp, multiple)

Figure 13. Unidraw Graphic-GraphicComp instantiation diagram

5. NEW IMPLEMENTATION TECHNIQUES

This section shows how the explicit representation of configuration patterns can enhance the implementation step
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of the development process. Two implementation techniques will be considered: Aspect and Subject-Oriented
Programming.

5.1 ASPECT ORIENTED PROGRAMMING

“Aspects” are cross-cutting3 non functional constraints on a system, such as error handling and performance
optimization. Current programming languages fail to provide good support for specifying “aspects,” and so code
that implements them is typically very tangled and spread throughout the entire system. Aspect-oriented
programming (AOP) [15] is a technique proposed to address this problem. An application that is based on the
AOP paradigm has the following parts: (i.a) a component language, used to program the system components,
(i.b) one or more aspect languages, used to program the aspects, (ii ) an aspect “weaver” , which is responsible for
combing the component and the aspect languages, (iii .a) a component program that implements the system
functionality using the component language, and (iii .b) one ore more aspect programs that implement the aspects
using the aspect languages.

As discussed throughout the paper, the main idea behind configuration patterns is not the specification of aspects,
but the specification of the variabilit y and extensibilit y requirements of a system. However, AspectJ [17], which
is an AOP extension for Java, can be seen as a general-purpose development tool that allows the definition of the
program and its aspects in Java.

AspectJ allows the addition of code before or after a method or a constructor is executed (keywords before and
after). The language also allows the addition of code using catch and finally (similar to Java’s catch and finally
constructs). All of these keywords determine the points in the component program in which the aspects code
written in Java, should execute. AspectJ also provides the new constructor, for extending classes with new
elements specified in separate aspects.

Even though the primary concern of AspectJ is the specification of non-functional aspects, such as code
optimization, it can be used in a straightforward way for implementing configuration patterns.

Figure 14 is an example of how AspectJ can be used to implement the Strategy and Visitor design patterns in the
ALADIN framework (described in section 4.1). Aspect TipOfTheDay implements a method showTip, which is
introduced (keyword new) to the ShowCourse class whenever this aspect is plugged into the system. This
provides a clean implementation to the Visitor pattern. Aspects are plugged in by invoking the weaver as shown
next.

% ajweaver ShowCourse.ajava TipOfTheDay.ajava SelectCourseOption2.ajava

aspect TipOfTheDay {

static new void ShowCourse.showTip() { // implementation }

}

aspect SelectCourseOption1 {

static after void ShowCourse(*) { // implementation of option 1}

}

aspect SelectCourseOption2 {

static after void ShowCourse(*) { // implementation of option 2}

}

Figure 14. Using AspectJ to implement configuratin patterns

The approach the Strategy pattern is similar: all the different implementations of a given variation are placed in
different aspects (SelectCourseOption1 and SelectCourseOption2). When instantiating the framework, one
aspect that implements each variation must be plugged-in. In this example, the variation method will execute
right after the ShowCourse class constructor executes.

                                                          
3 If there are two concepts that are better represented in different programming languages (like code optimization
and the logic of the system itself) they are said to be cross-cutting concepts [15].
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The limitation of this approach to implement configuration patterns is technological: the current implementation
of AspectJ is a beta version, and the approach has not yet been used in large scale applications. However, it is
important to note that all the information required for implementing and instantiating the aspects can be derived
from the UML-extended class diagrams (which is not true for standard class diagrams).

5.2 SUBJECT ORIENTED PROGRAMMING

Subject-oriented programming (SOP) [12] is a paradigm that allows the decomposition of a system into various
subjects. A subject compiler [14] can then be used to generate an application by composing the desired subjects.
The composition is specified through composition rules such as Merge and Override [14].

The application of SOP implementation techniques to configuration patterns leads to an implementation very
similar to the one presented for AspectJ. A subject would be used to represent each different implementation for
each framework hot-spot, and another subject would be used to represent the pattern stable (non-varying) parts.
The subjects would then be combined through the use of appropriate composition rules to generate the pattern .

Figure 15 ill ustrates the approach, where Framework  is the instantiation of the selectCourse hot-spot with the
method defined in the subject SelectCourseOptionX. Like AOP, SOP is still experimental and there are no
industrial subject compilers.

class ShowCourse {

…

selectCourse()

...

}

class SelectCourseOptionX {

selectCourse()

}

Override(class ShowCourse, ShowCourse,
SelectCourseOptionX)

Framework Instance

Figure 15. Using SOP to implement the Strategy pattern in ALADIN

The important point here is to note that a more appropriate representation for configuration patterns may also
enhance its implementation, perhaps allowing the construction of tools to completely systematize the process.

6. RELATED WORK

UML represents design patterns as collaborations (or mechanisms) and provides a way of instantiating pattern
descriptions through the binding stereotype [24]. However, pattern instantiation can be far more complex than
simply assigning abstract classes to concrete ones: new classes and relationship may have to be created, abstract
methods have to be implemented, and so on. Catalysis extends the UML approach to frameworks ands proposes a
design method for building frameworks [7].

The use of role diagrams to represent object collaboration is one of the most promising fields in object oriented
design research [4]. Riehle proposes an extension of the OOram methodology [21] to facilit ate framework design
and documentation [22]. His work proposes a solution for an explicit division of the design, highlighting the
interaction of the framework with its clients. The use of roles does simpli fy the modeling of patterns that require
a lot of object collaboration and provides a solution for documenting classes that participate in several design
patterns at the same time. However, it does not provides an explicit representation for hot-spots and application
classes, and does not model the instantiation process.
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The hook tool [10] can be seen as a tool to help framework instantiation. The tool uses an extension of UML to
frameworks (shading the  classes) that may help framework design. However it is a very simple extension to
UML: it does not support the representation of the hot-spot and does not classify the hot-spot types (extension
and variation).

Adaptable Plug-and-Play Components (APPCs for short) [18] is a language support concept to help the
specification of object collaboration diagrams [21, 22] and can help the implementation of frameworks as shown
in [8]. Also Lieberherr and the researchers of the Demeter Project [16] have developed a set of concepts and
tools to help and evaluate object oriented design that may be applied to design patterns and frameworks. Some
work in the systematic application of patterns to implement framework hot-spots can be fund in [20, 25].

7. CONCLUSIONS AND FUTURE WORK

The main goal of this research is to define an adequate representation for patterns and frameworks that is useful
in the documentation, implementation, and instantiation steps of the software development process. The proposed
representation is complementary to existing OOADMs, and is defined an extension to UML.

This paper presented the definition of configuration patterns and described how their representation can be vastly
enhanced with a more appropriate notation. Examples throughout the paper have shown that the approach is also
valid to frameworks that assemble several configuration patterns.

More detailed case studies of the use of the proposed notation to describe and implement real world frameworks
and the specification, including the architecture and functionality, of an environment that supports the creation of
frameworks using this notation is found in [8]. This environment supports design analysis over framework
structure, generates code using various approaches, and generates documentation models. The first version of
such an environment is completely developed and was used and validated in the development of several
frameworks.

In addition, the use of domain-specific languages (DSLs) [13] and builders to help framework instantiation is
being further investigated, where our major goal is the derivation of the DSLs from specifications written in our
UML-extended notation. This derivation is already partially supported in the current implementation of our
environment.
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