Extending UML to Improve the Representation of Design Patterns

Mar cus Fontoura and Carlos Lucena
Software Engineaing Laboratory (LES)
Computer Science Department, Pontifica Catholic University of Rio de Janeiro
Rua Marqués de So Vicente, 225, 22453900 Rio de Janeiro, Brazl
e-mail: {mafe, lucena} @les.inf.puc-rio.br

ABSTRACT

Several design patterns are defined to make systems more flexible and extensible. The main goal of this work is
to show how the representation of thiskind of patterns, which we refer to as configuration design patterns, can be
vastly improved through extensions to the diagrams used to model them. An extension to the UML design
notation to better represent configuration patterns is proposed and ill ustrated through examples of well-known
design patterns and red-world frameworks. The paper also shows that the proposed representation can be more
easily mapped to new implementation techniques guch as Asped-Oriented Programming (AOP) and Subjed-
Oriented Programming (SOP).

KEY WORDS: configuration design patterns, pattern representation, UML, new implementation techniques,
frameworks.

1. INTRODUCTION

Configuration design patterns are patterns used to make systems more flexible and extensible. Most of the design
patterns proposed in [11] can be dassfied in this category’. This work addresses the problem of configuration
design patterns representation. Based on our experience @plying design patterns to structure @mplex
frameworks[5, 8, 9] and teading courses on patterns [6] some anclusions were driven:

» Configuration design patterns need to be instantiated;

* The pattern form used to represent them is based on OOADMSs diagrams, such as OMT [23] and UML [24]
classand interadion diagrams;

* Current OOADMSs do not provide dements and diagrams to represent instantiation, which is a key concept
behind configuration patterns;

* Severa design patterns are mmplex design structures that may lead to very tangled diagrams, espedally
when several patterns are combined in a system.

Based on these premises, we have developed an extension to the UML notation that enhances the representation
of configuration patterns by: (i) explicitly representing the pattern instantiation, and (ii) being abstrad enoughto
simplify the diagrams and all ow several implementation approaches to be used. The solution was based on the
UML extensibility mechanisms [24].

The rest of the paper is organized as follows: Sedion 2 shows how three well-known design patterns (Strategy,
Composite, and Visitor) [11] are represented first in standard UML and then by the proposed notation. This
sedion also compares both representations highlighting the benefits of our approach. Sedion 3 details the
solution describing the syntax and semantics of the new elements. Sedion 4 shows how the solution can be
applied to red-world frameworks that use several configuration patterns. Sedion 5 describes an approach to map
the propaosed pattern representation into new upcoming implementation technologies such as AOP [15] and SOP
[12]. Sedion 6 describes related work while Sedion 7 concludes the paper and outlines our future reseach
diredions.

2. EXAMPLESOF DESIGN PATTERN REPRESENTATION

This sdion presents ©me well-known patterns using standard UML diagrams, discussthis representation, and

! Normally, the Singleton, Adapter, Facale, Flyweight, Interpreter, and Memento design patterns are the only
ones from the 23 petterns presented in [11] that will not be dasdfied as configuration patterns. However, this
classficaionisalittl e bit subtle and depends upon the pattern use.

1

shows how it can be enhanced by adding rew elements to the underlying design rotation. Sedion 3 detail s the
proposed solution.

2.1 STRATEGY

Figure 1 ill ustrates the structure field of the Strategy design pattern [11] using standard UML. The ideabehind
this pattern is to encapsulate possble variations of a given algorithm, allowing the system to invoke the more
appropriate dgorithm depending on a given context.

Context Strategy
strategy
contextinterface() 1 | +algorithm()

\

ConcreteStrategy

+algorithm()

Figure 1. Srategy class diagramin standard UML

The user that wants to use Strategy has to implement the set of posshle dgorithms in Strategy subclasses
(ConcreteStrategy.algorithm()). Thisis exadly the pattern instantiation step. The necessty of instantiation step
implies that Strategy is a configuration pattern. The understanding of instantiation step is essential for applying
Strategy, however Figure 1 does not give aly information about it.

Figure 2 shows an extended version of standard UML classdiagrams, where the pattern hot-spots [19, 25] are
explicitly represented. A hot-spot is defined here & the aped of the pattern that may vary, depending on the
pattern instantiation. In this case, the method algorithm() is a hot-spot as indicated by the tagged value variable,
which means that algorithm() implementation may vary. This representation predsely captures the ideabehind
Strategy, which isto encapsulate dgorithm variations. Another diff erence from this diagram and the standard one
presented in Figure 1 is that the dassConcreteStrategy is highlighted, indicating that it is an application class
Applicaion classs, differently from the standard ones, exist only after the pattern is instantiated. The highlighted
classs are the ones that have to be alded to the system to implement a new pattern , and are the ones that the
user should focus when configuring the system. Considering the Strategy pattern, several classes may be
provided to implement the different algorithms that are used within that pattern .

Context Strategy
strategy
contextlnterface() 1 | +algorithm()

{variable}

N\

{incomplete}

ConcreteStrategy

+algorithm()

Application
class

Figure 2. Explicit representation of the pattern hot-spots

Theincomplete constraint indicates that more subclasses of Strategy may be aeaed. Incompleteis provided by
the standard set of UML constraints [24].

Although Figure 2 is more expressve than the standard one regarding the pattern instantiation, it can till be
complemented with the instantiation diagram presented in Figure 3. Currently none of the eistent OOADMSs
provide diagrams that have the similar semantics to the instantiation diagrams described here. The ideais to
define the steps that have to be performed during the pattern instantiation in a visual process language.
Instantiation diagrams are defined using the dements provided by UML adivity diagrams, which are the ones
used to represent workflow models.

>? Strategy Instantiation

(SubclasqStrategy, ConcreteStrategy))

v

<I mplement(ConcreteStrategy, algorithm, | mp)>

Figure 3. Instantiation diagram for Strategy

Figure 2 and Figure 3 complement ead other and together provide amore expressve representation for the
Strategy pattern than the one showed in Figure 1. The foll owing subsedions ow how other two configuration
patterns described in [11] can be better represented using the same mncepts. Sedion 3 generali zes the solution,
describing the syntax and semantics of the extensions we made to the UML notation.

2.2 COMPOSITE

Figure 4 ill ustrates the Composite design pattern [11] classdiagram in UML. Composite provides a uniform way
to crede objed trees that represent part-whole hierarchies. The idea behind this pattern is to make wmposite
objed are independent form its components. Thus, the pattern all ows new kinds of componentsto be alded to the
system without disturbing the behavior of the compaosite objeds.

Component

+operation) children

+add()
+remove()
+getChild()

AN

*

L eaf Composite

+operation() +operation() <
+add()

+remove()

+getChild()

Figure 4. Composite UML class diagram

A user who wants to apply composite has to define the set of components used within the intended pattern .
Another important point is that this st of components may evolve during the system lifetime throughthe aldition
of new led classes. Different instantiations of the pattern may have adifferent set of led classes. Figure 5 and
Figure 6 explicitly ill ustrate this instantiation step.

Component

+operation() children

+add()
+remove()

+getChild()
\{ incomplete}
|

*

Led Compasite
+operation() +operation() >
+add()
+remove()
Applicaion +getChild()
class

Figure 5. Highlighting the configuration step

’? Composite Instantiation

< SubclasgComponent, NewL eaf) >

v

< Implement(NewL eaf, operation, |mp) >

Figure 6. Composite pattern instantiation diagram

23 VISITOR

This design pattern adds extensibilit y to a system, all owing the definition of new operations without changing the
interface of the dass on which they operate. Figure 7 shows its UML class diagram. In order to add new
operations to the system a user that applies Visitor should creae new classes in the Visitor hierarchy and
implement the desired operations on the newly creaed class.

<<interface>> <<interface>>
Visitor Element
visitConcreteElement() accept(Vistor)

AN AN

ConcreteVisitor ConcreteElement
+visitConcreteElement() +accept(Visitor)
+operation()

Figure 7. Visitor UML class diagram

Figure 8 extends the standard classdiagram by identifying the pattern hot-spot and highlighting the gplicaion
classes, which are the ones that implement the Visitor interface The hot-spot is identified by extensible tagged
value in the method container of the Concr eteElement class This representation indicates that new methods may
be alded to the dement clases’. The gplicability of the incomplete constraint is enlarged here to also
encompassthe redi zéion relationship, meaning that new classes that implement a given interface(Visitor in this
case) may be alded to the projed during instantiation time. The arresponding instantiation diagram is presented
in Figure 9.

2 This tagged value is just representing the semantics of the pattern, since in the Visitor implementation new
methods are not added to ConcreteElement classes diredly. However, the ideabehind the pattern is to “extend”
the dassinterface ad the “extensible” tagged value documents that predsely.

<<interface>> <<interface>>

Visitor Element

visitConcreteElement() accet(Visitor)

AN

T {incomplete} T
ConcreteVisitor ConcreteElement
+visitConcreteElement() {extensible}
+accet(Visitor)
+operation()
Applicaion

class

Figure 8. Identifying Visitor hot-spots

t? Visitor instantiation

C NewClasg(ConcreteVisitor) >

v

@I ementInterfacgConcreteVisitor, Visitor, I@

)

Figure 9. Visitor pattern instantiation diagram

3. PROPOSED SOLUTION

As down by the design patterns described in sedion 2, the propcsed solution for enhancing the configuration
patterns representation extends UML by:

» Changingthe dassdiagramsto explicitly identify pattern hot-spots and application classes;
» Defining instantiation diagrams, which represent the pattern instantiation process

To extent UML classdiagrams a new stereotype was creded, Application class, and two new tagged values were
defined, variable and extensible. Finaly, the gplicability of the incomplete constraint was enlarged to
encompassdependency relationships aswell. Table 1 summarizes these dements and defines their semantics.

The instantiation diagrams are avisua representation of a processlanguage. In the cae of isolated patterns the
instantiation diagrams tent to be simple, as the ones $owed in sedion 2, however for frameworks that combine
severa patterns and have speda domain spedfic regquirements these diagrams can beaome quite cmplex, as will
be shown in sedion 4.

Element Type Appliesto Semantics
Applicaion Stereotype Class Clases that exist only in the pattern . Generaly,
class application clases mode the varying concept

encgpsulated by the pattern. New applicaion classes are
defined during the pattern instantiation.

Class

Variable Tagged value | Method Means that the method implementation is the varying
concept that the pattern encapsulates. Or in other words,
the method implementation depends on the pattern

i nstantiation.
Extensible Tagged value | Method and | Means that the dass interface (methods, attributes, or
Attribute bath) is varying concept that the pattern encgpsulates. Or
Containers in other words, the dassinterfacedepends on the pattern

instantiation: new methods and attributes may be defined
to extend the dassfunctionality.

Incomplete Constraint Generadlization | Almost the same meaning that in standard UML but
and applies also to dependency relationships. Incomplete
Redizaion means that new clases that satisfy a given relationship

(generalization or redizaion) may be alded during the
pattern instantiation

Table 1. Summary of the new elements and their meaning

Instantiation diagrams are represented using the syntax defined by the UML adivity diagrams, where eat adion
state defines a transformation over the pattern design[2]. The syntax of the underlying transformational language
isPROLOGlike and its smantic is quite intuiti ve. Some transformation examples are:

* SubclasqSuperclass NewClasg: NewClass is a new class added to the system that is a subclass of
Superclass The user has to spedfy the name of newClass

* Implement(Class Method, Imp): asks the user to provide a ©ncrete implementation Imp for the method
Method o classClass

* NewClasqClasy: creaes anew classin the system. The pattern user hasto provide the dassname.

The complete language is a variation of the one propaosed in [2] and can be found in [8].
4. DOCUMENTING FRAMEWORKS

This dion presents two case studies that show how frameworks that assemble several configuration patterns
can also be better documented by the proposed UM L -extended notation.

4.1 WEB-BASED EDUCATION FRAMEWORK

ALADIN [9] is a web-based education framework that is currently being wsed to suppart the development of
Web-based applications, such as AulaNet [5] (http://aries8.uwaterloo.caaulanet) and OwINet [1]. We estimate
that the use of ALADIN increases productivity by afador of 3.

Figure 10 ill ustrates a design model for part of the ALADIN framework. It represents a student subsystem, in
which the user has to seled the desired course (method selectCour se) before he can browse its content, which is
displayed by method showContent. Figure 10 uses the UML extended representation to explicitly represent the
framework hot-spats:

* Method selectCourse is a variation hot-spot, which means that severa seledion medhanisms may be
implemented within the framework. This means that eadn of ALADIN must define its own course seledion
medhanism. This hot-spot was implemented by the Strategy design pattern;

» ClassShowCourse might have itsinterface etended by the addition of new methods. This all ows different s
of ALADIN to configure its own set of displaying methods, avoiding defining in the framework classes
methods that might be unwanted for some framework s. This hot-spot was implemented by the Visitor design
pattern. TipOfTheDay, which shows dart-up tips, might be afeaure wanted by some framework s, as
shown in Figure 10.

<<interface>> ShowCourse SelectStrategy

Vist seled
IStor {extensble) [| +select()
visitShowCours() +seledCourse()
{variable}

\ +showContent() l

i +accept(Visitor)

TipOfTheDay ConcreteSeled

+visitShowCourse() +eelect()

Figure 10. Modeling frameworks

Figure 10 is representing the framework architedure in a more expressve way than if standard UML was used.
The identificaion of the hot—spots by the tagged values extensible and variable indicae what are and the exad
meaning of ead of the hot-spats. The gplication classes indicae what parts of the system are used to instantiate
the hot-spats.

Figure 11 presents the instantiation diagram that models how the ALADIN should be instantiated, considering
only the portion of the framework described in the example. Note that the extension of ShowCour se interfaceis
optional, since it may not be required by a given framework . On the other hand, another may want to extend
ShowCour se with several methods. The selectCour se hot-spot has to be configured by every framework and
only one seledion algorithm is all owed per .

?ALADIN Instantiation

(Subcl ass(SeledStrategy, ConcreteSel ect))

v

< Implement(ConcreteSel ect, select, Imp) >
—»(NewClass(ConcreteVisitor) >47
) 4

@pl ementlnterfaceg(ConcreteVisitor, Visitor, Im@
@~

Figure 11. ALADIN instantiation process

Figuwe 10 and Figure 11 complement ead other, and together they completely spedfy the ALADIN
configuration phase. It is very important that framework developers provide documentation that describes what
parts of the system should be dhanged to creae avalid framework . It is very unlikely that a framework user will
be ale to browse the framework code, which generally has complex and large dass hierarchies, and write the
appropriate ade if the framework is not well documented. These diagrams addressthis problem.

4.2 UNIDRAW FRAMEWORK

Unidraw [26] is a graphicd editor framework that allows the @nstruction of domain-spedfic editors. Different
domain-spedfic editors normally require new graphica components. Unidraw all ows the definition of these new
components by the aedion of composite components (GraphicComp subclasses) from the set of primitive
components (Graphic subclasses) and composite cmmponents previoudly defined in the system.

Figure 12 ill ustrates this design structure. During instantiation, new subclasses of Graphic and GraphicComp
may be defined. Graphic subclasses implement the framework primitive components while GraphicComp
subclases define compaosite ammponents. In this example, the mmpaosite ammponents are AND, OR, and NAND
gates used to model eledricd circuits in schematic cgture systems.

Graphic * GraphicComp *
\{ incompl ete} \{ incompl ete}
I I
[| I |
Line Or L And Nand
Application Application Application Application
class class class class

Figure 12. Unidraw Graphic-GraphicComp design structure
However, there is a balance between reuse and runtime performancethat the Unidraw user should take in account
when defining a new graphic component [27].

1. If he wants maximal reuse, a new component might be defined as a cmpaosition of existing GraphicComp
subclass The Nand component illustrated in Figure 12 uses this approach. This option may have
performance problems due to the visuali zation approach adopted by the framework;

2. If he wants maximal performance a new component should be described as a new primitive component
(Graphic subclasg. The Or component showed in Figure 12 uses this approach. This option will require
much more implementation eff ort, since nothing is being reused,;

3. Anintermediate solution is the definition of a new component by a aistom compasition of existing Graphic
subclasses, asthe cae of the And component (Figure 12).

The instantiation diagram showed in Figure 13 formally presents these instantiation options to the framework
user. Note that an application builder that guides the user in the instantiation of new Unidraw appli cations may be
defined based on these diagrams. We ae now investigating how builders can be derived from the framework

documentation [8].
Unidraw Instantiation
[intermediate solution] [max reuse]
[max performance] X

4

C Subclass(GraphicComp, NewComponent)> C Subclass(GraphicComp, NewComponent)>

Gggregata(NewCompomnt, Graphic, multi pID @egates(NewComponent, GraphicComp, mul@
\ 4

< Subclass(Graphic, NewComponent))

#/ Implement(NewComponent, Draw, Imp) ><—

Figure 13. Unidraw Graphic-GraphicComp instantiation diagram

5. NEW IMPLEMENTATION TECHNIQUES

This dion shows how the explicit representation of configuration patterns can enhance the implementation step

9

of the development process Two implementation techniques will be mnsidered: Asped and Subjed-Oriented
Programming.

5.1 ASPECT ORIENTED PROGRAMMING

“Aspeds’ are dosscutting® non functional constraints on a system, such as error handling and performance
optimization. Current programming languages fail to provide good suppart for spedfying “aspeds,” and so code
that implements them is typicdly very tangled and spread throughout the entire system. Asped-oriented
programming (AOP) [15] is a technique propased to addressthis problem. An application that is based on the
AOP paradigm has the following parts: (i.a2) a component language, used to program the system components,
(i.b) one or more aped languages, used to program the aspeds, (ii) an asped “weaver”, which is responsible for
combing the component and the asped languages, (iii.a) a wmponent program that implements the system
functionality using the component language, and (iii .b) one ore more aped programs that implement the aspeds
using the asped languages.

Asdiscussed throughout the paper, the main ideabehind configuration patterns is not the spedficaion of aspeds,
but the spedficaion of the variability and extensibility requirements of a system. However, AspedJ [17], which
isan AOP extension for Java, can be seen as a general-purpase development toal that all ows the definition of the
program and its aspeds in Java.

AspedJ allows the aldition of code before or after amethod a a @nstructor is exeauted (keywords before and
after). The language dso al ows the aldition of code using catch and finally (similar to Java's cach and finally
congtructs). All of these keywords determine the points in the cmponent program in which the apeds code
written in Java, should exeaute. AspedJ also provides the new constructor, for extending classes with new
elements edfied in separate aspeds.

Even though the primary concern of AspedJ is the spedficaion of non-functional aspeds, such as code
optimization, it can be used in a straightforward way for implementing configuration patterns.

Figure 14 is an example of how AspedJ can be used to implement the Strategy and Visitor design patterns in the
ALADIN framework (described in sedion 4.1). Asped TipOfTheDay implements a method showTip, which is
introduced (keyword new) to the ShowCourse class whenever this asped is plugged into the system. This
provides a dean implementation to the Visitor pattern. Aspeds are plugged in by invoking the weaver as diown
next.

% aj weaver ShowCourse. aj ava Ti pOf TheDay. aj ava Sel ect Cour seOpti on2. aj ava

aspect TipOfTheDay {

static new void ShowCourse.showTip() { // implementation }

}
aspect SeledCourseOptionl {

static after void ShowCourse(*) { // implementation of option 1}

}
aspect SeledCourseOption2 {

static after void ShowCourse(*) { // implementation of option 2}

Figure 14. Using AspectJ to implement configuratin patterns

The gproach the Strategy pattern is smilar: all the different implementations of a given variation are placed in
different aspeds (SelectCourseOptionl and SelectCourseOption2). When instantiating the framework, one
asped that implements ead variation must be plugged-in. In this example, the variation method will exeaite
right after the ShowCour se classconstructor exeautes.

3 |f there ae two concepts that are better represented in diff erent programming languages (like @de optimization
and the logic of the system itself) they are said to be crosscutting concepts [15)].

10

The limitation of this approad to implement configuration patterns is technologicd: the airrent implementation
of AspedJ is a beta version, and the gproach has not yet been used in large scde gplicdions. However, it is
important to note that all the information required for implementing and instantiating the aspeds can be derived
from the UML-extended classdiagrams (which is not true for standard classdiagrams).

5.2 SUBJECT ORIENTED PROGRAMMING

Subjed-oriented programming (SOP) [12] is a paradigm that all ows the decomposition of a system into various
subjeds. A subjed compiler [14] can then be used to generate an application by composing the desired subjeds.
The cmmposition is pedfied throughcompasition rules sich as M erge and Override[14].

The gplicaion of SOP implementation techniques to configuration patterns leals to an implementation very
simil ar to the one presented for AspedJ. A subjed would be used to represent ead diff erent implementation for
ead framework hot-spot, and another subjed would be used to represent the pattern stable (non-varying) parts.
The subjeds would then be combined throughthe use of appropriate mmpasition rules to generate the pattern .

Figure 15 ill ustrates the gproadh, where Framework is the instantiation of the selectCour se hot-spot with the
method defined in the subjed SelectCourseOptionX. Like AOP, SOP is dill experimental and there ae no
industrial subjea compilers.

class ShawCourse {

selectCourse() class SelectCourseOptionX {
selectCourse()
} }

Override(classShowCourse, ShowCourse,
SelectCourseOptionX)

'

Framework Instance

Figure 15. Using SOP to implement the Srategy pattern in ALADIN

The important paint here is to note that a more gpropriate representation for configuration patterns may also
enhanceits implementation, perhaps all owing the mnstruction of todls to completely systematize the process

6. RELATED WORK

UML represents design patterns as coll aborations (or medchanisms) and provides a way of instantiating pattern
descriptions through the binding stereotype [24]. However, pattern instantiation can be far more complex than
simply assgning abstrad classes to concrete ones: new classs and relationship may have to be aeaed, abstrad
methods have to be implemented, and so on. Catalysis extends the UML approach to frameworks ands proposes a
design method for buil ding frameworks[7].

The use of role diagrams to represent objed coll aboration is one of the most promising fields in objed oriented
designreseach [4]. Riehle propases an extension of the OOram methoddogy [21] to fadlit ate framework design
and dacumentation [22]. His work proposes a solution for an explicit division of the design, highlighting the
interadion of the framework with its clients. The use of roles does smplify the modeling of patterns that require
a lot of objed collaboration and provides a solution for documenting classes that participate in several design
patterns at the same time. However, it does not provides an explicit representation for hot-spots and applicaion
classes, and does not model the instantiation process

11

The hook toadl [10] can be seen as a tod to help framework instantiation. The tool uses an extension of UML to
frameworks (shading the dasses) that may help framework design. However it is a very simple extension to
UML: it does not suppart the representation of the hot-spot and dces not classfy the hot-spat types (extension
and variation).

Adaptable Plug-and-Play Components (APRCs for short) [18] is a language suppat concept to help the
spedficaion of objed collaboration diagrams [21, 22] and can help the implementation of frameworks as siown
in [8]. Also Lieberherr and the reseachers of the Demeter Projed [16] have developed a set of concepts and
tools to help and evaluate objed oriented design that may be gplied to design patterns and frameworks. Some
work in the systematic gpplication of patterns to implement framework hot-spots can be fund in [20, 25].

7. CONCLUSIONSAND FUTURE WORK

The main goal of this reseach isto define an adequate representation for patterns and frameworks that is useful
in the documentation, implementation, and instantiation steps of the software development process The proposed
representation is complementary to existing OOADMSs, and is defined an extension to UML.

This paper presented the definiti on of configuration patterns and described how their representation can be vastly
enhanced with a more gpropriate notation. Examples throughout the paper have shown that the gproad is also
valid to frameworks that assemble several configuration patterns.

More detail ed case studies of the use of the proposed notation to describe and implement red world frameworks
and the spedficdion, including the achitedure and functionality, of an environment that supparts the aedion of
frameworks using this notation is found in [8]. This environment supparts design analysis over framework
structure, generates code using various approaches, and generates documentation models. The first version of
such an environment is completely developed and was used and validated in the development of severa
frameworks.

In addition, the use of domain-spedfic languages (DSLs) [13] and builders to help framework instantiation is
being further investigated, where our major goal is the derivation of the DSLs from spedfications written in our
UML-extended notation. This derivation is already partialy supparted in the airrent implementation of our
environment.

REFERENCES

1. P. Alenca, D. Cowan, S. Crespo, M. F. Fontoura, and C. J. Lucena, “OwINet: An Objed-Oriented
Environment for WBE”, Second Argentine Sympasium on Objed-Orientation (ASOQO'98), 91-100, 1998

2. P. Alenca, D. Cowan, J. Dong, and C. J. Lucena, “A Transformational ProcessBased Formal Approach to
Objea-Criented Design”, Formal Methods Europe (FME'97), 1997.

E. Casais, “Anincremental classreorganization approach’, ECOOP 92, LNCS615, 114132, 1992

4. Jim Coplien, “Broadening beyond oljeds to patterns and other paradigms’, ACM Computing Surveys,
28(4es), 1996

5. S. Crespo, M. F. Fontoura, and C. J. Lucena, “AulaNet: An Objed-Oriented Environment for Web-based
Education”, International Conference of the Learning Sciences (ICLS 98), 1998

6. S. Crespo, M. F. Fontoura, and C. J. Lucena, “Objed-Oriented Design Course”, Computer Science
Department, Pontificad Catholic University of Rio de Janeiro, http://ead.les.inf.puc-rio.br/aulanet (in
Portuguese — “Projeto de Sistemas de Software”).

7. D. D'Souza ad A. Will's, Objects, Components, and Frameworks with UML: The Catalysis Approach,
Addison Wedley, 1997

8. M. F. Fontoura “A Systematic Approach for Framework Development”, Ph.D. Disertation, Computer
Science Department, PUC-Rio, 1999

9. M. F. Fontoura, L. M. Moura, S. Crespo, and C. J. Lucena, “ALADIN: An Architedure for Learningware
Applications Designand Instantiation”, MCC34/98, Computer Science Department, PUC-Rio, 1998

10. G. Froehlich, H. Hoover, L. Liu, and P. Sorenson, “Hooking into Objed-Oriented Application Frameworks”,
ICSE’97, 491-501, 1997,

11 E. Gamma, R. Helm, R. E. Johnson, and J. Vlisddes, Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

12

12

13.
14.

15.

16.

17.

18.

19.
20.
21,
22,

23.

24,

25,

26.

27.

W. Harrison and H. Osdher, “ Subjed-Oriented Programming (A Critique of Pure Objeds)”, OOPSLA’93,
ACM Press, 411-428 1993

P. Hudak, “Building Domain-Spedfic Embedded Languages’, ACM Computing Surveys, 28A(4), 1996

M. Kaplan, H. Ossher, W. Harrison, and V. Kruskal, “Subjed-Oriented design and the Watson Subjed
Compiler”, OOPSLA’96 Subjedivity Workshop, 1996 (http://www.reseach.ibm.com/sop/).

G. Kiczdes, J. Lamping, A. Mendhekar, C. Maeala, C. Lopes, J. Loingtier, and J. Irwin, “Asped-Oriented
Programming’, ECOOP' 96, LNCS 1241, 220-242, 1997.

K. Lieberherr and |. Holland, “ Asauring Good Style for Objed-Oriented Programs’, |EEE Software, 38-48,
September 1989

C. Lopes and G. Kiczdes, “Recett Developments in AspedJ’, ECOOP98 Workshop Reader, LNCS 1543,
1998

M. Mezni and K. Lieberherr, “Adaptative Plug-and-Play Components for Evolutionary Software
Development”, OOPSLA’98, ACM Press, 97-116, 1998

W. Pree Design Patterns for Object-Oriented Software Devel opment, Addison-Wesley, 1995
W. Preg Framework Patterns, Sigs Management Briefings, 1996
T. Reenskaug, P. Wold, and O. Lehne, Working with objects, Manning, 1996

D. Riehle and T. Gross “Role Model Based Framework Design and Integration”, OOPSLA’98, ACM Press,
117-133 1998

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design,
Prentice Hall, EnglewoodClifs, 1991

J. Rumbaugh I. Jaoobson, and G. Booch, The Unified Modeling Language Reference Manual, Addison-
Wesley, 1998

H. A. Schmid, “Systematic Framework Design by Generalizaion”, Communications of the ACM, 40(10),
1997

J. Vlisddes, “Generadized Graphicd Objed Editing’, Ph.D. Disrtation, Department of Eledricd
Engineaing, Stanford University, 199Q

J. Vlissdes, Personal communication, April 1999

13

