
1

Using viewpoints to derive object-or iented frameworks: a case
study in the web-based education domain

Marcus Fontoura, Sérgio Crespo, Car los José Lucena
Computer Science Department

Pontifical Catholic University (PUC-Rio)
Rua Marquês de São Vicente, 225
22453-900, Rio de Janeiro, Brazil

{ mafe, crespo, lucena} @inf.puc-rio.br

Paulo S. C. Alencar , Donald D. Cowan
Computer Systems Group

University of Waterloo
Waterloo, Ontario
Canada, N2L3G1

{palencar, dcowan}@csg.uwaterloo.ca

ABSTRACT
This paper is an experience report that ill ustrates the applicabili ty of a viewpoint-based de-
sign method for the Web-based education (WBE) domain. The method is a new approach for
domain analysis that generates an object-oriented framework from a set of concrete applica-
tions. These applications are defined as viewpoints, since they provide different perspectives
of the framework domain. Various existent WBE environments have been used as viewpoints
in our case study. The design method has been successfully applied for these viewpoints gen-
erating the ALADIN framework. The analyzed WBE environments are presented through
object-oriented diagrams. The implementation and use of ALADIN is discussed to validate
the results of the case study.

KEYWORDS
Viewpoints, domain analysis, object-oriented frameworks, web-based education, framework
usabili ty, domain-specific languages.

1 INTRODUCTION
There are various application areas that are not established yet and for which new ideas and
models are presently under development and evaluation. These are domains for which the
viabili ty of rapidly building new applications is essential and strategic from a practical point
of view. Examples of application domains that can be classified in this category include web-
based education (WBE) (Fontoura et. al., 1998), electronic commerce (Ripper, 1999), and
computational biology (Andreatta et. al., 1998).

An interesting strategy for constructing new applications for these domains is the develop-
ment of object-oriented frameworks. An object-oriented framework can reduce the costs of
developing applications since it allows designers and implementers to reuse their previous
experience on problem solving at design and code levels (Johnson, 1997). Prior research has
shown that high levels of software reuse can be achieved through the use of frameworks
(Hamu and Fayad, 1998).

A framework models the behavior of a family of applications (Parnas et. al. 1985). Its kernel
represents the similarities among the applications and the specific application behavior is
provided by the hot-spots (Pree, 1996; Fontoura, 1999).

2

Although object-oriented software development has experienced the benefits of using frame-
works, a thorough understanding of how to identify, design, implement, and change them to
meet evolving requirement needs is still object of research (Johnson, 1997; Fontoura, 1999).
Therefore, framework development is very expensive not only because of the intrinsic diff i-
culty related to capturing the domain theory but also because of the lack of appropriate meth-
ods and techniques to support framework specification and design.

Techniques such as design patterns (Gamma et. al. 1995), meta-object protocols (Kiczales el.
al. 1991), refactoring (Johnson and Opdyke, 1993), and class reorganization (Cassais, 1992),
have been proposed to support framework design and evolution. However, none of them ad-
dresses the problem of helping the framework designer to find and structure framework
similarities (frozen spots) and flexible points (hot-spots).

This paper describes a method for structuring object-oriented frameworks based on the analy-
sis of a set of existent applications. These applications are defined as viewpoints of a domain
and rules are applied to derive the domain abstractions from viewpoint definitions. The
method applicabili ty is ill ustrated by a large real case study in the web-based education
(WBE) domain.

In order to validate the results of the WBE case study the paper describes how the derived
framework has been implemented and discusses its usabili ty. Two domain-specific languages
(DSLs) (Hudak, 1996) that assist the framework instantiation are described. The DSLs fa-
cilit ate the instantiation of applications and have been defined from the framework design.

The rest of the paper is organized as follows: Section 2 presents the software engineering
concepts that serve as a basis for our work. It describes the viewpoint-based design method
and a supporting environment used to systematize the method application. Section 3 ill us-
trates the WBE case study. Section 4 describes the implementation and use of the derived
framework to validate the experiment. Section 5 outlines the experiences learned in applying
the design method to the WBE domain. Section 6 describes some related work. Finally, sec-
tion 7 presents our conclusions and outlines our future research directions.

2 FRAMEWORKS AND THE VIEWPOINT-BASED DESIGN METHOD
This section presents the software engineering concepts that serve as a basis of our design
method: frameworks, viewpoints, viewpoint unification, and meta-pattern application. Exam-
ples are introduced to ill ustrate the main points. A supporting environment used to systema-
tize the method application is also described.

2.1 Frameworks
A framework is defined as a generic software for a domain (Johnson, 1997). It provides a re-
usable semi-finished software architecture that allows both single building blocks and the de-
sign of subsystems to be reused. It differs from a standard application because some of its
parts, which are the hot-spots or flexible points (Pree, 1996), may have a different imple-
mentation for each framework instance, and are left incomplete during design.

Examples of successful frameworks include Unidraw (Vlissides, 1990), ET++ (Gamma et. al.
1995), and IBM San Francisco (http://www.software.ibm.com/ad/sanfrancisco/).

Current object-oriented design methods completely neglect the importance of helping the
framework designer to structure the system’s kernel and hot-spots (Pree, 1996). The view-
point-based design method addresses this problem.

2.2 Viewpoints
The development of complex software systems involves many agents with different perspec-
tives of the system they are trying to describe. These perspectives, or viewpoints, are usually

3

partial or incomplete. Software engineers have recognized the need to identify and use this
multiplicity of viewpoints when creating software systems (Filkelstein et. al., 1992; Ains-
worth, 1994).

In this paper viewpoints will be represented as standard object-oriented design artifacts,
which may be developed through any OOADM (object-oriented analysis and methods) nota-
tion. This paper will use an UML-like notation (Rumbaugh et. al., 1998) to ill ustrate the ex-
amples.

2.3 A general descr iption of the viewpoint-based design method
In (Roberts and Johnson, 1997) Roberts and Johnson state that “Developing reusable frame-
works cannot occur by simply sitting down and thinking about the problem domain. No one
has the insight to come up with the proper abstractions” . They propose the development of
concrete examples in order to understand the domain. The viewpoint-based design method
allows the definition of frameworks through the analysis of concrete applications, which are
defined as viewpoints of the framework domain.

For the purposes of this paper a domain is a set of viewpoints, and every domain has an asso-
ciated. Unification rules are defined as a way of describing how applications, or viewpoints,
can be combined to compose a framework. They specify a way of structuring the similarities
and flexible points of a set of viewpoints in a given framework architecture, as ill ustrated in
Figure 1.

Unification Rules

Framework

Viewpoint1 Viewpoint2 Viewpointn

Figure 1. Unification rules
The main idea underlying the unification rules is not to rely on a reverse engineering process
that generates a framework from a given set of applications, but to help the framework de-
signer to identify the domain abstractions and better structure the framework architecture. In
addition, the use of unification rules highlights the relationship between the kernel (frozen
spots) and the hot-spot elements in the framework design.

Once all the relevant viewpoints are defined, the design structure of the framework kernel can
be found by analyzing the viewpoints representations and obtaining a resulting design repre-
sentation that reflects a structure common to all viewpoints. This common structure is the
“ unification” of the viewpoints. This part of the design method is based on the semantic
analysis of viewpoint diagrams to discover the common concepts that will compose the de-
sign of the framework kernel.

The elements that are not in the kernel are the ones that vary and depend on the use of the
framework. These elements define the framework hot-spots (Pree, 1996) that must be adapt-
able to each application that may be instantiated from the framework. Each hot-spot repre-
sents an aspect of the framework that may have a different implementation for each frame-
work instantiation.

4

Unification rules can not automatically generate the final framework design since the view-
points generally represent concrete applications, and for this reason, the semantics of how to
define the flexible part of the framework is not present in their design. An intermediate arti-
fact, which separates the kernel and hot-spot elements, has to be generated before the genera-
tion of the framework design. This intermediate artifact is the “template-hook model” , which
is based in template and hook methods (Pree, 1996).

Template methods model the kernel elements which are responsible for invoking the hook
methods, which model the hot-spots (Pree, 1996). In the “template-hook model” the relation-
ships between template and a hook classes are defined as “hot-spot relationships” , where the
template classes contain the template methods and hook classes contain the hook methods.
The generation of the template-hook model may only be partly automated since human inter-
action may be required to assist the application of the unification rules.

The next step is to define which meta-pattern (Pree, 1996) should be used to model each hot-
spot relationship. The application of meta-patterns defines the hot-spot design structure, gen-
erating the final framework design. This part of the method has to be assisted by human ac-
tors, since the selection of each meta-pattern to use depends on the hot-spot flexibili ty re-
quirements, and this information is not present in the viewpoints. Once the meta-patterns
have been selected their application may be completely automated, transforming the tem-
plate-hook model into the framework design.

Figure 2 ill ustrates the whole process in more detail . The next two subsections detail the uni-
fication of viewpoints, which generates the template-hook model, and the application of
meta-patterns, which generates the framework design.

View point
unification

Tem plate-
hook m odel

View point1 View point2 View pointn

M eta-pattern
application

Fram ew ork
design

Figure 2. General view of the process
2.4 Viewpoint unification
A more detailed description of the viewpoint unification process is now presented. This proc-
ess imposes some pre-conditions on the viewpoints that are going to be unified:

1. Same concepts must be represented by the same names: the unification rules will use
names to define the semantics of the involved concepts. Thus, if two different viewpoints
had names Report and Form to represent the same concept, a refactoring procedure

5

(Johnson and Opdyke, 1993) would have to be used to rename one of them. The renaming
refactorings can be applied to classes, attributes, and methods and their application are
behavior preserving as shown in (Johnson and Opdyke, 1993), meaning that their appli-
cation does not change the viewpoints semantics;

2. Orthogonal concepts: all classes, methods, and attributes in the initial set of viewpoints
must model orthogonal concepts. For example, if one viewpoint had a generateFormat
method that implements the functionali ty provided by methods generateReport and for-
mat defined in another viewpoint, a refactoring procedure would have to be used to split
generateFormat into two methods. Always that method-p defined in viewpoint-i is non-
orthogonal to method-q defined in viewpoint-j, a behavior preserving decomposition can
be applied to transform the methods making them orthogonal. The same holds for classes
and attributes;

3. Attribute types must be consistent: attributes representing the same concept (and for this
reason having the same name in all viewpoints) should also have the same type. That
means that if the same attribute is an integer in one application and a float in other, the
applications are inconsistent and the unification rules will not deal with these variations;

4. Cyclic hierarchies must be avoided: the unification of viewpoints cannot generate an in-
heritance cycle. If there is a viewpoint-i within a certain class hierarchy such that class-
sub is a subclass of class-super and a viewpoint-j in which class-super is a subclass of
class-sub there is an inconsistency and the unification rules cannot be applied. Note that
this problem is generally related to the domain model, since there is an inconsistency, for
example, in modeling Employee as a subclass of Person, and Person as a subclass of Em-
ployee in two different viewpoints of the accounting domain.

Normally some cases class restructuring approaches (Casais, 1992; Johnson and Opdyke,
1993) can be applied to handle the inconsistency. The verification of the above preconditions
and the application of restructuring transformations to solve the inconsistency have to be
supported by human actors.

When the set of viewpoints is consistent unification rules can be applied. The result of the
unification process is a template-hook model. The unification process is based on the fol-
lowing rules:

1. Every class that belongs to the set of viewpoints has a corresponding class, with same
name, in the template-hook model;

2. If a method has the same signature and implementation in all the viewpoints it appears, it
has a corresponding method, with same name, signature, and implementation, in the tem-
plate-hook model;

3. If a method exists in more than one viewpoint with different signature it has a corre-
sponding hook method in the template-hook model, with same name but undefined sig-
nature and implementation;

4. If a method exists in more than one viewpoint with different implementation1 it has a cor-
responding hook method in the template-hook model, with same name and signature but
undefined implementation;

5. All the methods that use hook methods are defined as template methods. There is always

1 This check cannot be automatically performed since it is an undecidable procedure, and has
to be supported by human actors.

6

a hot-spot relationship between the class that has a template method and the class that has
its correspondent hook method;

6. All the existing relationships in the set of viewpoints that have no corresponding hot-spot
relationship are maintained in the in the template-hook model.

Figure 3 shows an example of two consistent viewpoints that are going to be unified.

Viewpoint 2

Viewpoint 1

format(f i le)

FormatRepor t

recordset = getData(db, query)
Ge tDa ta

genera teRepor t (recordset ,
htmlf i le)

Genera teRepor t

report(db, query, f i le)

Repor t

format(f i le)

FormatRepor t

recordset = getData(db, query)
Ge tDa ta

genera teRepor t (recordset ,
rtf lf i le)

Genera teRepor t

report(db, query, f i le)

Repor t

Figure 3. Viewpoint unification example
Viewpoint 1 shows a design diagram of a simple report generator. Its main class is Report,
which uses the classes GetData to access the information required by the report and Gener-
ateReport, to generate the final report in an HTML file. Class GenerateReport uses class
FormatReport to configure the layout of the generated HTML file.

Viewpoint 2 follows basically the same structure. Classes Report and GetData have the same
methods, with same signature and implementation. Method generateReport (in class Gener-
ateReport) has different signatures in the two viewpoints, since one asks for an HTML file
while the other asks for an RTF file. In this case rule 3 implies that it is a hook method.
Method format (in class FormatReport) has different implementations in the two viewpoints,
since one configures HTML files while the other configures RTF files. Rule 4 defines this
method as another hook method. Rule 5 states that all methods that use hook methods are
template methods. Thus, in this example, the template methods are report and generateRe-
port.

The template-hook model presented in Figure 4 is the result of the unification of viewpoints.
The dashed arrows represent the hot-spot relationships. Note that the signature of method
generateReport is UNDEFINED, as established by rule 3, and the implementations of meth-
ods generateReport and format are also UNDEFINED, as established by rules 3 and 4, al-
though not shown in the diagram.

format(fi le)

FormatReport

recordset = getData(db, query)
GetData

generateRepor t (UNDEFINED)

GenerateReport

report(db, query, f i le)

Report

Figure 4. Template-hook model
All undefined signatures and implementations must be defined by the framework user, during
instantiation, as will be exempli fied in section 4.

7

2.5 Applying meta-patterns
The framework design is generated from the template-hook model. The framework designer
must eliminate all hot-spot relationships from the template-hook model, replacing them by
the most appropriate meta-pattern. Hot-spot cards (Pree, 1996) are used to assist this process.

Figure 5 shows the hot-spot card layout, which is a variation of the one presented in (Pree,
1996). There are two flexibili ty properties shown in the card: adaptation without restart and
recursive combination. The combination of these properties is used to select which meta-
pattern should be applied.

Table 1 shows the mappings between flexibili ty properties and meta-patterns. In the unifica-
tion meta-patterns the template and hook methods belong to the same class and adaptations
can be made only through inheritance, which requires the application restart for the changes
take effect. In the separation meta-patterns the template and hook methods appear in different
classes and adaptations can be made at runtime through the use of object composition.

The recursive combinations of template and hook methods allow the creation of direct object
graphs, li ke the Composite design pattern presented in (Gamma et. al., 1995).

Adaptation without restart Recursive Combination Meta-pattern

1 Unification

2
�

Separation

3
�

Recursive Unification

4
� �

Recursive Separation

Table 1. Mappings between flexibilit y properties and meta-patterns
As an example, let us consider the hot-spot relationships in the template-hook model shown
in Figure 4. Suppose that it is necessary the definition of new generateReport methods in the
system at runtime. Also suppose that the format method does not need to be redefined during
runtime. Since neither of these relationships requires a recursive combination, the hot-spot
cards that represent their flexibili ty properties are presented in Figure 5.

Hot-Spot CardHot-Spot Card

adap ta t i on
wi thout res tar t

recurs ive
comb ina t i on

Templa te

H o o k

GenerateRepor t

FormatRepor t

Hot-Spot CardHot-Spot Card

adap ta t i on
wi thout res tar t

recurs ive
comb ina t i on

Templa te

H o o k

XRepor t

GenerateRepor t

Figure 5. Hot-spot card utili zation example
The result diagram after the meta-patterns application is the framework design presented in
Figure 6.

Since the meta-pattern used for the hot-spot relationship between classes GenerateReport and
FormatReport unifies the template and hook methods in the same class, class FormatReport

8

is not required in the framework design. A very important property of the method is the con-
trol of the design complexity, leading to simple and readable designs. In this example, the
generated framework design has less classes than each of the original viewpoints.

recordset = getData(db, query)
GetData

genera teRepor t (UNDEFINED)
format(f i le)

Genera teRepor t

report(db, query, f i le)

Repor t

Figure 6. Framework design
2.6 Supporting environment
A supporting environment has been defined to assist the viewpoint-based design method.
Since refactoring rules can handle viewpoint inconsistencies, the environment allows the use
of refactoring procedures before performing the viewpoint unification. The environment has
been defined as a meta-environment to allow for the configuration of new unification rules,
new refactoring rules, and the object-oriented model used to describe the viewpoints. The
meta-artifacts are described by scripting languages used to configure the environment. This is
necessary since the actual unification rules may evolve with the discovery of new patterns,
design concepts, or even with the improvement of current object-oriented design languages.

Figure 7 ill ustrates the meta-environment architecture, highlighting its inputs (meta informa-
tion and viewpoints) and outputs (refactored viewpoints and frameworks). Its current imple-
mentation runs on a WWW browser and has been developed using CGI scripts and relational
databases for storing the viewpoints, frameworks, and unification and refactoring rules. The
environment currently does not support graphical representation of applications and frame-
works, and demands text-based definition of classes and relationships, as shown in Figure 8.
The application of unification and refactoring rules must be always assisted by the framework
designer, who has to interact with the environment in several steps of the process. Examples
of tasks that must be assisted by the framework designer are informing whether a method im-
plementation varies or not and the selection of the most adequate meta-pattern to model each
hot-spot relationship.

Refactoring Rules

Unification Rules

OO Model

Meta-Environment

View point1 View point2 View pointn

Fram ew ork

M
et

a
In

fo
rm

at
io

n

Figure 7. Supporting meta-environment architecture

9

Figure 8. Current implementation
3 THE WBE DOMAIN CASE STUDY
This section presents the models of the analyzed WBE environments and describes the appli-
cation of the viewpoint-based design method to generate the ALADIN framework. Six exis-
tent WBE environments have been used in the case study. The selection of these environ-
ments was based on three criteria: (i) their popularity and importance; (ii) the availabili ty of
documentation; and (iii) their underlying concepts, so that environments that do not model
new concepts have been discarded.

Although there are several others environments available, the six selected environments are
very representative and cover the great majority of domain concepts so far discussed in li t-
erature (Papert, 1996). Each of these models was considered as a different viewpoint the
WBE domain, and the viewpoint unification was used to define the framework design.

Two aspects must be considered when analyzing the following models. First, except for Au-
laNet and LiveBOOKs, we do not know the exact object-model of the analyzed environ-
ments. The models presented here have been specified by the use of these environments. Sec-
ond, when the models are similar we just refer to the figure that describes it in order to avoid
presenting similar models twice.

Since the objective of our comparison of WBE environments is the definition of a framework
design, we were not interested in a feature by feature analysis of the environments. Only the
core entities of the WBE domain have been analyzed. A useful concept adopted throughout
all this analysis was the concept of services. A service has been defined as an atomic func-
tionali ty provided by the environment. Examples of services are discussions groups, course
news, quizzes, and bulletin boards.

3.1 AulaNet
AulaNet (Crespo et. al., 1998) is a WBE environment developed at the PUC-Rio Software
Engineering Laboratory. AulaNet allows several institutions to use the environment simulta-
neously. Each institution may have several departments. The courses are related to institu-

10

tions and each course has assigned actors. A course consists of a selection of services. This
design structure is presented in Figure 9.

Courses Services

DepartmentsInstitutions

Actors

Figure 9. AulaNet OMT class diagram
The AulaNet environment is composed of two sites: a learning site and an authoring site. The
students use the learning site to attend a specific course, while the authors use the authoring
site to create and maintain the courses. The class structure that implements both sites is
shown in Figure 10, where class Idioms represents the support to multiple languages (Eng-
lish, Portuguese, and so on).

Site

Id ioms Courses

Figure 10. AulaNet site class structure
3.2 LiveBOOKs
The LiveBOOKs (Cowan, 1998) distributed learning/authoring environment is a computer-
based teaching/learning and authoring system that supports learning and authoring activities.
LiveBOOK class structure is very similar to AulaNet’s, except of two main differences: it is
does not support the definition of many institutions and departments and the actors types are
not restricted to student and author, as show in Figure 11. LiveBOOKs allows new types to
be defined as subclasses of ActorTypes.

Courses Services

Actors ActorTypes

Figure 11. LiveBOOKs class diagram
3.3 Web Course in a Box
Web Course in a Box (WCB) (http://views.vcu.edu/wcb/intro/wcbintro.hml) is a course crea-
tion and management tool for web-assisted delivery of instruction. The main difference of
this environment and the other two previously presented is that in WCB the final user can
modify the visual representation (Interface) for each one of its entities as shown in Figure 12
and Figure 13.

11

Interface

Institutions Departm ents Serv icesCourses

Figure 12. WCB interface class structure

Site

Idiom s Courses Interface

Figure 13. WCB site class structure
3.4 Web-CT
Web-CT (http://homebrew.cs.ubc.ca/webct/) is a tool that facilit ates the creation of sophisti-
cated WBE environments. Web-CT class structure can be seen as an extension of the one pre-
sent for LiveBOOKs. The new concept is that each service can be of two different types: in-
ternal, which is implemented by the environment, and external, which is any WWW applica-
tion not implemented by the environment but available elsewhere in the Internet. Examples of
external services are chat applications, CU-SeeMe, e-mail , and list servers. This design
structure is presented in Figure 14.

Courses Services

Actors

Internal

External

ActorTypes

Figure 14. Web-CT class diagram
3.5 LearningSpace and Vir tual-U
These two environments are put together here because they have similar class structures. Lo-
tus Education and IBM are responsible for the research and development of Lotus Learning-
Space (http://www.lotus.com/home.nsf/welcome/learnspace), an educational technology with
supporting services for distance education.

The LearningSpace and Virtual-U (http://virtual-u.cs.sfu.ca/vuweb/) class structures are es-
sentially the same as the one presented in Figure 14. However, they additionally introduce the
concepts of documents and tasks (Figure 15). The services are based on documents, and each
document may have various tasks assigned to it. In addition, LearningSpace allows for
documents and tasks to be classified in categories (Figure 16).

12

Sevices

Documents

Tasks

Figure 15. LearningSpace and Virtual-U: services class structure

Tasks

DocumentsCategories

Figure 16. LearningSpace: tasks, categories, and documents
3.6 The viewpoint unification
We have tried to capture the core functionali ty of the analyzed WBE environments to define
an object-oriented framework, called ALADIN (Fontoura et. al., 1998). The viewpoint-based
design method has been applied to define the framework kernel and hot-spot structures.

Figure 17 ill ustrates (in an abstract way) how each one of the analyzed environments has
been used as a viewpoint of the final framework. The basic idea was to identify a framework
that could provide all the functionali ty required for generating, at least, the six analyzed envi-
ronments.

AulaN et L iveBO O KS

W C B

W ebCT V irtual-U

Learn ingSpace

ALADIN F ram ework

Figure 17. Viewpoints unification (abstractly)
Before applying the unification rules we must verify if viewpoints are consistent. Classes
Tasks, Documents, and Categories (in LearningSpace and Virtual-U) are non-orthogonal to
the definition of Services in the other viewpoints. It is possible to model Tasks, Documents,
and Categories as Services in LiveBOOKS or in AulaNet. To solve this inconsistency these
classes have been discarded the template-hook model. Note that this decision is creative and
depend on understanding the domain concepts. After this modification the viewpoints have
become consistent and could be unified.

Classes Institutions, Departments, Courses, ActorTypes, Services, and Documents are respon-
sible for accessing their correspondent information in a database system. To provide this
functionali ty access methods (get/set) are present in each of these classes. However, the at-
tributes that define these entities vary in each analyzed environment, and therefore all the ac-
cess methods have different signature and implementation in each viewpoint. Unification rule
number 3 may be applied for these methods, generating the template-hook model shown in
Figure 18.

13

C ourses S ervices

D epartm entsInstitutions

A ctors

In te rna l

E xterna l

A c tor
T ypes

Figure 18. ALADIN template-hook model
Classes Interface and Site define the visual representation and navigational structure of the
WBE applications, respectively. Interface methods depend on the layout structure (usually
defined by a graphical designer), which may vary for each viewpoint. Site methods are re-
sponsible for generating the output HTML files, and may also vary from one viewpoint to
another. Therefore, unification rule number 4 may be applied for both Interface and Site.
Figure 19 and Figure 20 shows the generated template-hook models.

Interface

Institutions CoursesDepartm ents Serv ices

Figure 19. ALADIN interface template-hook model
Site

Idiom s Courses Interface

Figure 20. ALADIN site template-hook model
Since adaptation during runtime is an important feature in the WBE domain and recursive
combination is not required by any of the hot-spots, the separation meta-pattern was selected
to implement all the hot-spot relationships in the template-hook model. The structure of the
final framework design is shown in Figure 21, Figure 22, and Figure 23. The UNDEFINED
signatures and implementations, elided in the figures, will be completed only during frame-
work instantiation since they may vary for each instantiated application.

14

Courses Serv ices

Depar tmentsInsti tut ions

Actors

Internal

External

Actor
Types

Figure 21. ALADIN class diagram

Interface

Institutions CoursesDepartments Services

Figure 22. ALADIN interface class structure
Site

Idiom s Courses Interface

Figure 23. ALADIN site class structure
This section has shown how the design method has been successfully applied to a large case
study in the WBE domain. Next section describes the implementation and use of the
ALADIN framework.

4 VALIDATING THE GENERATED FRAMEWORK
To verify quali ty of the frameworks generated from the design method a running version
ALADIN has been implemented and tested in the creation of WBE applications.

ALADIN has been implemented in CGILua (Iersalimschy et. al., 1997) following the frame-
work model design structure generated from the viewpoints unification. Two domain specific
languages (DSLs) (Hudak, 1996) have been defined to assist its instantiation:

1. Educational Language: used in the definition of the educational components (courses,
actors, services, institutions and departments);

2. Navigational Language: used in the definition of the language (e.g. English, French), in-
terface (e.g. background images, buttons), and navigational structure.

The DSLs constructs have been defined form the ALADIN design. Each framework hot-spot
has an associated DSL construct. Programs written in these two DSLs are used to complete
the missing hot-spot information, marked as UNDEFINED in the framework design.

We estimate that the use of ALADIN increases the productivity by a factor of three. A WBE
system that would take six months to be developed may be instantiated from ALADIN in ap-
proximately two months, for example. This conclusion was based on several experiments de-
veloped by our research group, including the redesign of AulaNet.

15

The following subsections describe the two DSLs and show an instantiation example.

4.1 Educational Language
Educational Language programs must be transformed to complete the definition of the
ALADIN hot-spots. Two files are generated from each Educational program: Database defi-
nition and Access methods. The first is used for defining the database structure that will be
used by the WBE application being instantiated. The second provides the get/set methods for
accessing the database. Figure 24 ill ustrates this architecture.

Educational
program

DSL Transformation

Database
definition

Access
m ethods

Educational
language
definition

Figure 24. Educational language architecture
The following program code is written in Educational Language.
Institution "PUC-RIO", "Pontificia Universidade Catolica - Rio de Janeiro", "PUC.gif";
Department "CETUC", "TELECOMUNICATIONS", "CETUC.GIF";
Department "CS", "COMPUTER SCIENCE", "CS.GIF";
Actor Type Teacher, "Teacher"

{ name String;
descr iption Memo;
Photo Image; };

Actor Type Student, "Student"
{ name String;

description Memo;
period Integer;
address String;
average Real; };

Course
{ name String;

code String;
syllabus Memo;
description Memo;
image Image; };

Service "CourseNews"
{ news Memo;

initialDate Date;
finalDate Date; }

read = [Student]
write = [Teacher];

Each language construct is used to complete the missing information one hot-spot. The defi-
nition of the course attributes in the operator Course is an example.

The execution of the Database definition code generates the database that will be used by the
WBE application being instantiated. The current implementation of ALADIN generates Mi-
crosoft Access databases. One database is generated for each instantiated application.

The following Lua methods (Iersalimschy et. al., 1996), which have been generated from the
previously shown Educational program, are part of the Access methods used to access course
definitions. Similar access methods are generated for the others hot-spots. These methods en-
capsulate the SQL commands, allowing ALADIN users to generate WBE environments

16

without having any knowledge in manipulating databases.
luaTable = getCourse(name, code, syllabus, d escription, image)
addCourse(name, code, syllabus, description, image)
updateCourse(oldName, name, code, syllabus,d escription, image)
deleteCourse(name)

4.2 Navigational Language
ALADIN allows the generation of one WWW site for each type of actor defined in the sys-
tem. Normally two sites are always present in the existent WBE environments: a learning site
and an authoring site. However, ALADIN allows other actor types to have their own site. As
an example we could define a site for the monitors and other site for the secretaries. All the
sites generated by the ALADIN framework can define many navigational structures.

The Navigational Language code is transformed into HTML and Lua files that will define the
application interface and navigational structure. These files use Access methods generated
from the Educational program access all the required information.

An example of Navigational Language program is provided next.
Language "English"
Language "Portuguese"
Text "title1", " English", "Resources"
Text "title1", "Portuguese", "Recursos"
Image "img1", " English", "c:\ing\img.gif"
Image "img1","Portuguese","c:\port\img.gif"
a := template("c:\templates\temp1.html")
b := template("c:\templates\temp2.html")
c := template("c:\templates\temp3.html")
b.next := c
b.previous := a

This language provides an operator for defining the languages supported by the environment
(language). The texts and images used by the environment are defined in the various lan-
guages. The HTML files are in fact templates, which have special tags for the texts and im-
ages. In this example the tag <ALADIN-TEXT> title1 </ALADIN-TEXT> would be replaced
by the string Resources, if the selected language had been English, and by the string Recur-
sos, if the selected language had been Portuguese.

The same is valid for the hypertext links that define the application navigational structure. In
the above example, the tag <ALADIN-LINK> previous </ALADIN-LINK> in template
temp2.html would be replaced by the string previous
 , while the tag <ALADIN-LINK> next </ALADIN-LINK> would be replaced by the
string next .

This approach allows the definition of all the texts, images, and navigational li nks in a unique
file, providing more readabili ty and flexibili ty. Since the site interface and navigational
structure are defined separate form the HTML templates, they may completely redefined
without impacting in the rest of the system.

In order to instantiate ALADIN the application developer has to define an Educational pro-
gram, a Navigational program, and all the required HTML templates.

4.3 ALADIN instantiation example
This section describes how the AulaNet authoring site (http://www.les.inf.puc-rio.br/aulanet)
has been redesigned using the ALADIN framework. The general structure of the authoring
site is shown in Figure 25.

17

Ident i f icat ion
Course Genera l

Informat ion
Serv ice

Select ion
Serv ice

Conf igurat ion

Figure 25. AulaNet authoring site: global view
In the identification step the author has to provide a user-id and password to the system. In
the course general information step all the basic information about the course must be com-
pleted, such as course name, description, and syllabus1. In the service selection phase the
author has to inform the system what services will be used for the course being developed.
Finally, in the service configuration phase, each selected service must be configured. Once all
these steps have been completed the course is ready and its learning site can be generated.
The detailed structure for the service selection step is shown in Figure 26, and HTML code
(with embedded CGILua) generated by the ALADIN framework is presented next.

show avai lable
serv ices

(resourses.html)

assign service to
couse

(assign. lua)

Figure 26. Resource selection: detailed structure

**
* services.html *
**
<HTML><HEAD>
<TITLE>Show Available Ser vices</TITLE>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000"

topma r gin=0 leftmargin=0>
<H1> Please select the services you want to use in your course </H1>
<FORM NAME="data" TARGET= "_top" METHOD="post" ACTION="assign.lua">
<!--$$
-- Select all the services available to the
-- current institution. The result of this
-- sele ction is stored in a Lua table.
table = getService(currentInstitution)
while (table ~= nil) do
 write('<td valign=middle>')
 write('<INPUT TYPE="Checkbox"

NAME="'..table[0]..'" VALUE="'..table[0]..'">')
 write('</td>')
 moveNext(table)
end
$$-->
<INPUT TYPE= "Submit" VALUE= "Next">
</FORM></BODY></HTML>

**
* assign.lua *
**
table = getService(currentInstitution)
while (table ~= nil) do

-- check if the resource is select or not
-- if true add the resource to the course

 if (cgi.table[0] = "ON") then
has(course, table[0])

 moveNext(table)
end

The generated HTML and Lua files are simple and easy to be understood since they use Ac-
cess methods high-level constructs instead of low-level database operations.

5 ANALYZING THE DESIGN METHOD
The ALADIN framework was the first large case study developed using the viewpoint-based

1 The fields to be completed in this step are defined by the Course operator, in the Educa-
tional program.

18

design method. The unification transformations have been applied without tool support since
the environment described in section 2.6 was not available at the time.

The application of the unification rules was very straightforward because the viewpoints had
similar design structures. However, the verification of viewpoint inconsistencies is a very
hard task that can only be performed by domain experts. In this case study the verification
that Services and Tasks, Documents and Categories were non-orthogonal classes has only
been possible because we were familiar with the semantics of these concepts.

The ALADIN implementation and the definition of the DSLs to assist its instantiation proc-
ess were completely based on the generated design model. ALADIN has been successfully
used in the development of several web-based applications, simpli fying the construction these
application and reducing development costs (Fontoura et. al., 1998). It has not been used out-
side our research group since its main purpose is to allow for experimentation with educa-
tional environments developed at our Lab.

Several other small case studies in other domains have been developed at our research group,
generating good results. However, in order to further evaluate the merits and the limitations
of the method new large case studies need to be developed. We are now evaluating the appli-
cabili ty of the approach for the electronic commerce domain. This project is being developed
with the support of the viewpoint unification tool described in this paper.

6 RELATED WORK
The model for framework development based on viewpoints proposed in (Alencar et. al.
1999) was used as our first approach for framework design, and the current version has been
refined through the development of several case studies.

Currently there are very few framework design methods. A pattern-based description of some
accepted approaches underlying framework design can be found in (Roberts and Johnson,
1997). However, existing methods do not address the problem of identifying the possible re-
lationships between kernel and hot-spot elements.

Some work in systematization of the application of patterns to implement framework hot-
spots can be fund in (Schmid, 1997). Other interesting aspects regarding framework design
such as framework integration, version control and over-featuring can be found in (Codenie
et. al., 1997).

7 CONCLUSIONS AND FUTURE WORK
This paper shows how unification rules can be used to generate frameworks from an initial
set of viewpoints. We believe that this approach leads to a more explicit definition of the
collaboration between the framework elements and helps the designer to better implement the
framework hot-spots through the use of meta-patterns. Currently comparable methods are al-
most nonexistent or in their infancy. The analysis process presented here is a large cased
study that helped us to validate our viewpoint-based design method.

Since the WBE domain is still not completely understood the need for an environment that
supports fast development of alternative WBE environments by non-programmers is a desir-
able goal. One advantage of our approach is that we can experiment with different environ-
ments while minimizing development costs. Another advantage is that teachers and education
researchers can develop their own environments, with littl e help from software engineers.

The viewpoint analysis presented here and the associated conceptual model are the theoretical
basis for the production of such a framework. The ALADIN framework is completely devel-
oped and has been tested in the generation of new WBE environments (Fontoura et. al.,
1998).

19

A new version of the method supporting environment that provides cooperative work capa-
biliti es and graphical representation is now being developed in Java. This tool will be used to
experiment with different objet-oriented models and evaluate the impact of these models to
framework design. More concretely, the tool will provide an uniform way of validating how
other design techniques can enhance framework design, since unification and refactoring
rules that can profit from these models will be compared through the environment.

The formalization of unification rules and a systematic approach for generating DSLs from
the framework design can be found in (Fontoura, 1999).

8 REFERENCES

Alencar, P. Cowan, D. Nelson, T. Fontoura, F. and Lucena, C., Viewpoints and Frameworks
in Component-Based Design, in Building Application Frameworks: Object-Oriented Foun-
dations of Framework Design, John-Wiley, (1999).

Ainsworth, M., Cruickshank, A. H., Groves, L. J., and Walli s, P. J. L., Viewpoint specifica-
tion and Z, Information and Software Technology, 36(1), 43-51 (1994).

Andreatta, A. Carvalho, S. and Ribeiro, C., An Object-Oriented Framework for Local Search
Heuristics, 26th TOOLS, IEEE Press, 33-45 (1998).

Casais, E., An incremental class reorganization approach, ECOOP’92 Proceedings, Lecture
Notes in Computer Science, 615, 114-132 (1992).

Codenie, W. Hondt, K. Steyaert, P. and Vercammen, A., From Custom Applications to Do-

main-Specific Frameworks, Communications of the ACM, 40(10), 71-77, (1997).

Cordy, J. and Carmichael, I., The TXL Programming Language Syntax and Informal Seman-
tics, Technical Report, Queen’s University at Kingston, Canada, 1993.

Cowan, D., An Object-Oriented Framework for LiveBOOKs, Technical Report, CS-98, Uni-
versity of Waterloo, Ontario, Canada, 1998.

Crespo, S., Fontoura, M., and Lucena, C., AulaNet: An Object-Oriented Environment for
Web-based Education, International Conference of the Learning Sciences 1998, 304-306
(1998).

Filkelstein, A., Kramer, J., Nuseibeh, B., Filkelstein, L., and Goedicke,M., Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development, International
Journal of Software Engineering and Knowledge Engineering, 2(1), 31-58 (1993).

Fontoura, M., A Systematic Approach for Framework Development, Ph.D. Thesis, Departa-
mento de Informática, PUC-Rio, 1999.

Fontoura, M., L. Moura, Crespo, S., and Lucena, C., ALADIN: An Architecture for Learn-
ingware Applications Design and Instantiation, MCC35/98, Monografias em Ciência da
Computação, Departamento de Informática, PUC-Rio, 1998 .

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns, Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

Hamu, D. and Fayad, M., Achieving Bottom-Line Improvements with Enterprise Frame-

20

works, Communications of ACM, 41(8), 110-113, (1998).

Hudak, P., Building Domain-Specific Embedded Languages, ACM Computing Surveys,
28A(4) (1996).

Iersalimschy, R., Borges, R., and Hester, A. M., CGILua A Multi -Paradigmatic Tool for Cre-
ating Dynamic WWW Pages, SBES’97 – Brazili an Symposium on Software Engineering,
(1997).

Ierusalimschy, R., Figueiredo, L. H., and Celes, W., Lua - an extensible extension language,
Software: Practice & Experience, 26(6), 635-652 (1996).

Johnson, R., Frameworks = (Components + Patterns), Communications of the ACM, 40(10)
(1997).

Johnson, R. and Opdyke, W. F., Refactoring and aggregation, Object Technologies for Ad-
vanced Software, First JSSST International Symposium, Lecture Notes in Computer Science,
742, 264-278 (1993).

Kiczales, G. des Rivieres, J. and Bobrow D., The Art of Meta-object Protocol, MIT Press,
1991.

Papert, S., The Connected Family, Longstreet Press, 1996.

Parnas, D. Clements, P. and Weiss, D., The Modular Structure of Complex Systems, IEEE
Transactions on Software Engineering, SE-11, 259-266, (1985).

Pree, W., Framework Patterns, Sigs Management Briefings, 1996.

Ripper, P., V-Market: A Framework for Agent Mediated E-Commerce Systems based on
Virtual Marketplaces, M.Sc. Dissertation, Departamento de Informática, PUC-Rio, 1999.

Roberts, D. and Johnson, R., Evolving Frameworks: A Pattern Language for Developing
Object-Oriented Frameworks in Pattern Languages of Program Design 3, Addison-Wesley,
(1997).

Rumbaugh, J. Jacobson, I. and Booch, G., The Unified Modeling Language Reference Man-
ual, Addison-Wesley, 1998.

Schmid, H., Systematic Framework Design by Generalization, Communications of the ACM,
40(10), 48-51, (1997).

Vlissides, J., Generalized Graphical Object Editing, Ph.D. Thesis, Department of Electrical
Engineering, Stanford University, 1990.

The authors:

Marcus Fontoura, is a researcher at the Software Engineering Lab, Computer Science De-
partment, PUC-Rio, Brazil , and a post-doctoral researcher at the Computer Science Depart-
ment, Princeton University, U.S.A.

Sergio Crespo is a Ph.D. candidate at the Computer Science Department, PUC-Rio, Brazil .

21

Car los José Lucena, is a full professor at the Computer Science Department, PUC-Rio, and
the director of the Software Engineering Lab at PUC-Rio, Brazil .

Paulo S. C. Alencar , is an associate research professor at the Computer Systems Group,
University of Waterloo, Canada.

Donald D. Cowan, is a professor emeritus at the Computer Science Department, University
of Waterloo, and the director of the Computer Systems Group, Canada.

