Using viewpointsto derive objea-oriented frameworks: a case
study in the web-based education domain

Marcus Fontoura, Sérgio Crespo, Carlos José Lucena
Computer Science Department
Pontificd Cathdlic University (PUC-Ri0)
Rua Marqués de Séo Vicente, 225
22453900, Rio de Janeiro, Brazil
{mafe, crespo, lucena} @inf.puc-rio.br

Paulo S. C. Alencar, Donald D. Cowan
Computer Systems Group
University of Waterloo
Waterloo, Ontario
Canada, N2L3G1
{paencar, dcowan} @csg.uwaterloo.ca

ABSTRACT

This paper is an experience report that ill ustrates the goplicability of a viewpoint-based de-
sign methodfor the Web-based education (WBE) domain. The methodis a new approach for
domain analysis that generates an olject-oriented framework from a set of concrete gplica-
tions. These goplications are defined as viewpaints, since they provide different perspectives
of the framework domain. Various existent WBE environments have been used as viewpoints
in ou case study. The design method has been succes<ully applied for these viewpaoints gen-
erating the ALADIN framework. The analyzed WBE environments are presented through
objed-oriented diagrams. The implementation and wse of ALADIN is discussed to validate
the results of the case study.

KEYWORDS
Viewpoints, domain analysis, olject-oriented frameworks, web-based education, framework
usabili ty, domain-spedfic languages.

1 INTRODUCTION

There ae various applicdion areas that are not established yet and for which new ideas and
models are presently under development and evaluation. These ae domains for which the
viabili ty of rapidly building new applications is esential and strategic from a pradical point
of view. Examples of applicaion damains that can be dassfied in this category include web-
based education (WBE) (Fontoura d. al., 1999, eledronic commerce (Ripper, 1999, and
computational biology (Andredta d. al., 1999.

An interesting strategy for constructing new applications for these domains is the develop-
ment of objed-oriented frameworks. An oljed-oriented framework can reduce the @sts of
developing applicaions snce it alows designers and implementers to reuse their previous
experience on oblem solving at design and code levels (Johnson, 1997. Prior research has
shown that high levels of software reuse can be achieved through the use of frameworks
(Hamu and Fayad, 199§.

A framework models the behavior of afamily of applications (Parnas et. al. 1985. Its kernel
represents the similarities among the gplicaions and the spedfic goplicaion behavior is
provided by the hat-spots (Preg 1996 Fontoura, 199).

1



Although oljed-oriented software development has experienced the benefits of using frame-
works, a thorough understanding of how to identify, design, implement, and change them to
med evolving requirement needs is dill objed of reseach (Johnson, 1997 Fontoura, 1999.
Therefore, framework development is very expensive nat only becaise of the intrinsic diffi-
culty related to capturing the domain theory but also because of the lack of appropriate meth-
ods and tedhniques to suppat framework spedfication and design.

Tedniques auch as design petterns (Gamma d. a. 1995, meta-objed protocols (Kiczales €.
a. 1999, refadoring (Johnson and Opdyke, 1998), and classreorganization (Cassais, 1992,
have been proposed to suppat framework design and evolution. However, nore of them ad-
dresses the problem of helping the framework designer to find and structure framework
simil ariti es (frozen spats) and flexible points (hot-spats).

This paper describes a methodfor structuring object-oriented frameworks based onthe analy-
sis of a set of existent applicaions. These gplications are defined as viewpoints of adomain
and rules are gplied to derive the domain abstradions from viewpoint definitions. The
method applicability is ill ustrated by a large rea case study in the web-based educaion
(WBE) domain.

In order to validate the results of the WBE case study the paper describes how the derived
framework has been implemented and dscusses its usabili ty. Two danain-specific languages
(DSLs) (Hudak, 199%) that asdst the framework instantiation are described. The DSLs fa
cilitate the instantiation d appli caions and have been defined from the framework design.

The rest of the paper is organized as follows: Sedion 2 pesents the software engineering
concepts that serve & a basis for our work. It describes the viewpoint-based design method
and a suppating environment used to systematize the method application. Sedion 3ill us-
trates the WBE case study. Sedion 4 cescribes the implementation and use of the derived
framework to validate the experiment. Sedion 5 oulines the experiences leaned in applying
the design method to the WBE domain. Sedion 6 describes some related work. Finally, sec-
tion 7 pesents our conclusions and oulines our future research drections.

2 FRAMEWORKSAND THE VIEWPOINT-BASED DESIGN METHOD

This ®dion presents the software engineering concepts that serve @ a basis of our design
method frameworks, viewpaints, viewpoint unificalion, and meta-pattern appli cation. Exam-
ples are introduced to ill ustrate the main pants. A suppating environment used to systema-
tize the method applicaionis aso described.

2.1 Frameworks

A framework is defined as a generic software for adomain (Johnson, 1997. It provides are-
usable semi-finished software achitecture that allows both single buil ding blocks and the de-
sign of subsystems to be reused. It differs from a standard application kecause some of its
parts, which are the hot-spats or flexible points (Preg 1999, may have adifferent imple-
mentation for each framework instance, and are left incomplete during design.

Examples of succesdul frameworks include Unidraw (Vlissdes, 1990, ET++ (Gamma d. a.
1995, and IBM San Francisco (http://www.software.ibm.com/ad/sanfranciscol/).

Current objed-oriented design methods completely negled the importance of helping the
framework designer to structure the system’s kernel and hd-spots (Pree 199%). The view-
point-based design method addresses this problem.

2.2 Viewpoints
The development of complex software systems invalves many agents with dff erent perspec-
tives of the system they are trying to describe. These perspedives, or viewpoints, are usually

2



partia or incomplete. Software engineas have reagnized the need to identify and wse this
multiplicity of viewpaoints when creding software systems (Filkelstein et. a., 1992 Ains-
worth, 1994.

In this paper viewpoints will be represented as fandard oljed-oriented design artifacts,
which may be developed through any OOADM (objed-oriented analysis and methods) nota-
tion. This paper will use an UML-like notation (Rumbaugh et. al., 1999 to ill ustrate the ex-
amples.

2.3 A general description of the viewpoint-based design method

In (Roberts and Johnson, 1997 Roberts and Johnson state that “ Developing reusable frame-
works canna occur by simply sitting down and thinking about the problem domain. No one
has the insight to come up with the proper abstradions’. They propcose the development of
concrete examples in order to understand the domain. The viewpoint-based design method
allows the definition d frameworks through the analysis of concrete gplications, which are
defined as viewpaints of the framework domain.

For the purpases of this paper adomain is a set of viewpaints, and every domain has an as-
ciated. Unification rules are defined as a way of describing how applications, or viewpoints,
can be combined to compase aframework. They spedfy away of structuring the simil arities
and flexible points of a set of viewpaints in a given framework architedure, as ill ustrated in

Figure 1.

Unification Rules

A 4

Framework

Figure 1. Unificationrules
The main ideaunderlying the unificationrulesis not to rely on areverse engineeing process
that generates a framework from a given set of applications, but to help the framework de-
signer to identify the domain abstractions and better structure the framework architedure. In
addition, the use of unificaion rules highlights the relationship between the kernel (frozen
spats) and the hat-spot elements in the framework design.

Once dl the relevant viewpaints are defined, the design structure of the framework kernel can
be foundby analyzing the viewpaints representations and oliaining a resulting design repre-
sentation that reflects a structure wmmon to al viewpoints. This common structure is the
“unification” of the viewpaints. This part of the design method is based on the semantic
analysis of viewpoint diagrams to discover the cmmmon concepts that will compose the de-
sign of the framework kernel.

The dements that are not in the kernel are the ones that vary and depend onthe use of the
framework. These elements define the framework hat-spots (Preg 19%) that must be alapt-
able to each applicaion that may be instantiated from the framework. Each ha-spot repre-
sents an asped of the framework that may have adifferent implementation for each frame-
work instantiation.



Unification rules can na automaticdly generate the final framework design since the view-
points generally represent concrete gplicaions, and for this reason, the semantics of how to
define the flexible part of the framework is not present in their design. An intermediate ati-
fad, which separates the kernel and hd-spot elements, has to be generated before the genera-
tion d the framework design. Thisintermediate atifact is the “template-hook model”, which
is based in template and hookmethods (Pree, 1996.

Template methods model the kernel elements which are resporsible for invoking the hook
methods, which model the hat-spots (Preg 19%). In the “template-hook model” the relation-
ships between template and a hook classes are defined as “hot-spat relationships’, where the
template dasses contain the template methods and hookclasses contain the hook methods.
The generation d the template-hook model may only be partly automated since human inter-
adion may berequired to assst the gplication d the unificaion rules.

The next step isto define which meta-pattern (Pree, 1996 shoud be used to model each ha-
spat relationship. The gplicaion d meta-patterns defines the hot-spot design structure, gen-
erating the final framework design. This part of the method tes to be asdsted by human ac-
tors, since the selection d each meta-pattern to use depends on the hot-spat flexibility re-
quirements, and this information is not present in the viewpoints. Once the meta-patterns
have been seleded their application may be completely automated, transforming the tem-
plate-hookmodel into the framework design.

Figure 2 ill ustrates the whole processin more detail . The next two subsedions detall the uni-
ficdion d viewpaoints, which generates the template-hook model, and the gplication o

meta-patterns, which generates the framework design.

Viewpoint
unification

v

Template-
hook model

Meta-pattern
application

A 4
Framework
design

Figure 2. General view of the process
2.4 Viewpoint unification
A more detail ed description d the viewpaint unification processis now presented. This proc-
essimposes me pre-condti ons on the viewpoints that are going to be unified:

1. Same oncepts must be represented by the same names: the unification rules will use
names to define the semantics of the invaved concepts. Thus, if two dfferent viewpoints
had names Report and Form to represent the same ncept, a refactoring procedure

4



(Johrson and Opdyke, 1998) would have to be used to rename one of them. The renaming
refactorings can be gplied to classes, attributes, and methods and their applicaion are
behavior preserving as shown in (Johrson and Opdyke, 1998), meaning that their appli-
caion daes not change the viewpoints mantics,

Orthogonal concepts: all classes, methods, and attributes in the initial set of viewpoints
must model orthogonal concepts. For example, if one viewpoint had a generateFormat
method that implements the functionality provided by methods generateReport and for-
mat defined in ancther viewpoint, a refactoring procedure would have to be used to split
generateFormat into two methods. Always that method-p defined in viewpoint-i is non
orthogonal to method-q defined in viewpoint-j, a behavior preserving decomposition can
be gplied to transform the methods making them orthogonal. The same halds for classes
and attributes,

Attribute types must be consistent: attributes representing the same mncept (and for this
reason having the same name in al viewpoints) shoud also have the same type. That
means that if the same dtribute is an integer in ore gplicaion and a float in ather, the
appli cations are inconsistent and the unification rules will not ded with these variations;

Cyclic hierarchies must be avoided: the unification d viewpoints cannd generate an in-
heritance cycle. If there is a viewpoint-i within a cetain class hierarchy such that class-
sub is a subclass of classsuper and a viewpaint-j in which classsuper is a subclass of
classsub there is an inconsistency and the unification rules canna be gplied. Note that
this problem is generally related to the domain model, sincethere is an inconsistency, for
example, in modeling Employee as a subclassof Person, and Person as a subclassof Em-
ployeein two dfferent viewpoints of the accourting domain.

Normally some caes class restructuring approadhes (Casais, 1992 Johrson and Opdyke,
1993 can be gplied to hand e the inconsistency. The verification d the dowve precondtions
and the gplicdion d restructuring transformations to solve the inconsistency have to be
suppated by human adors.

When the set of viewpaints is consistent unification rules can be gplied. The result of the
unificaion processis a template-hook model. The unificaion pocessis based on the fol-
lowing rules:

1.

Every classthat belongs to the set of viewpaints has a crrespondng class with same
name, in the template-hookmode;

. If amethod has the same signature and implementationin all the viewpaints it appears, it

has a mrrespondng method, with same name, signature, and implementation, in the tem-
plate-hookmodd!;

If a method exists in more than ore viewpoint with dfferent signature it has a corre-
spondng hook method in the template-hook model, with same name but undefined sig-
nature and implementation;

If amethod exists in more than ore viewpoint with diff erent implementation® it has a @r-
respondng hook method in the template-hook model, with same name and signature but
undefined implementation;

All the methods that use hook methods are defined as template methods. There is always

! This chedk canna be auitomaticaly performed sinceit is an undecidable procedure, and has
to be suppated by human actors.



ahot-spat relationship between the dassthat has atemplate method and the dassthat has
its corresponcent hookmethod

6. All the &isting relationships in the set of viewpaints that have no correspondng hot-spot
relationship are maintained in the in the template-hook model.

Figure 3 shows an example of two consistent viewpoints that are going to be unified.

Vi int 1 GetData
lewpoint recordset = getData(db, query|

@
Report
report(db, query, file)
GenerateReport FormatReport
.generateReport(recordset, ~ format(file)

htmlfile)

X . GetData
Viewpoint 2 recordset = getData(db, query|

@
Report
report(db, query, file)
GenerateReport FormatReport
generateReport(recordset, ~ - format(file)

rtflfile)

Figure 3. Viewpoint unifi cation example
Viewpoint 1 shows a design dagram of a simple report generator. Its main classis Report,
which uses the dasses GetData to accessthe information required by the report and Gener-
ateReport, to generate the final report in an HTML file. Class GenerateReport uses class
FormatReport to configure the layout of the generated HTML file.

Viewpoint 2 follows basicdly the same structure. Classes Report and GetData have the same
methods, with same signature and implementation. Method generateReport (in class Gener-
ateReport) has different signatures in the two viewpaints, since one aks for an HTML file
while the other asks for an RTF file. In this case rule 3 implies that it is a hook method.
Method format (in classFormatReport) has different implementations in the two viewpoints,
since one @nfigures HTML files while the other configures RTF files. Rule 4 defines this
method as another hook method. Rule 5 states that all methods that use hook methods are
template methods. Thus, in this example, the template methods are report and generateRe-
port.

The template-hook model presented in Figure 4 is the result of the unification d viewpaoints.
The dashed arrows represent the hot-spat relationships. Note that the signature of method
generateReport is UNDEFINED, as established by rule 3, and the implementations of meth-
0ds generateReport and format are dso UNDEFINED, as established by rules 3 and 4, a-
though na shown in the diagram.

Report GetData
report(db, query, file) > o recordset = getData(db, query)

v

GenerateReport FormatReport
generateReport(UNDEFINED) format(file)

Figure 4. Template-hodk model
All undefined signatures and implementations must be defined by the framework user, during
instantiation, as will be exemplified in sedion 4.



2.5 Applying meta-patterns

The framework design is generated from the template-hook model. The framework designer
must eliminate dl hot-spot relationships from the template-hook model, replacing them by
the most appropriate meta-pattern. Hot-spot cards (Preg 199%) are used to asgst this process

Figure 5 shows the hot-spot card layout, which is a variation d the one presented in (Preg
1996. There ae two flexibility properties shown in the card: adaptation withou restart and
reaursive wmbination. The cmbination d these properties is used to seled which meta
pattern shoud be goplied.

Table 1 shows the mappings between flexibili ty properties and meta-patterns. In the unifica-
tion meta-patterns the template and hookmethods belong to the same dass and adaptations
can be made only through inheritance, which requires the goplicaion restart for the danges
take dfed. In the separation meta-patterns the template and hookmethods appear in dfferent
classes and adaptations can be made & runtime through the use of objed compaosition.

The recursive mmbinations of template and hookmethods all ow the aeation d dired object
graphs, like the Compasite design pattern presented in (Gamma €. al., 1995.

Adaptation without restart Reaursive Combination Meta-pattern
1 Unification
2 | Separation
3 M Reaursive Unification
4 | | Reaursive Separation

Table 1. Mappngs between flexbilit y properties and meta-patterns
As an example, let us consider the hot-spat relationships in the template-hook model shown
in Figure 4. Suppacse that it is necessary the definition d new generateReport methods in the
system at runtime. Also suppcse that the format method das not need to be redefined during
runtime. Since neither of these relationships requires a reaursive combination, the hot-spot
cards that represent their flexibili ty properties are presented in Figure 5.

Hot-Spot Card
Template A
X adaptation
‘ Report ‘ without restart
recursive
Hook D combination
GenerateReport ‘
Hot-Spot Card
Template :
D adaptation
‘ GenerateReport ‘ without restart
recursive
Hook D combination
FormatReport ‘

Figure 5. Hot-spat card uili zation example
The result diagram after the meta-patterns application is the framework design presented in
Figure 6.

Sincethe meta-pattern used for the hot-spat relationship between classes GenerateReport and
FormatReport unifies the template and hookmethods in the same dass class FormatReport

7



isnat required in the framework design. A very important property of the methodis the con-
trol of the design complexity, lealing to simple and readable designs. In this example, the
generated framework design has lessclasses than each of the original viewpaints.

‘ GetData
recordset = getData(db, query

Report

report(db, query, file)

‘ GenerateReport

generateReport(UNDEFINED
format(file)

Figure 6. Framework design

2.6 Supporting environment

A suppating environment has been defined to assst the viewpoint-based design method.
Since refadoring rules can handle viewpoint inconsistencies, the environment all ows the use
of refadoring procedures before performing the viewpoint unification. The eavironment has
been defined as a meta-environment to allow for the @nfiguration d new unification rules,
new refadoring rules, and the object-oriented model used to describe the viewpaoints. The
meta-artifads are described by scripting languages used to configure the environment. Thisis
necessry since the adual unification rules may evolve with the discovery of new patterns,
design concepts, or even with the improvement of current objed-oriented design languages.

Figure 7 ill ustrates the meta-environment architecture, highlighting its inpus (meta informa-
tion and viewpoaints) and ouputs (refadored viewpaoints and frameworks). Its current imple-
mentation runs on a WWW browser and hes been developed using CGlI scripts and relational
databases for storing the viewpaints, frameworks, and unficaion and refadoring rules. The
environment currently does not suppat graphical representation d applicaions and frame-
works, and demands text-based definition d classes and relationships, as siown in Figure 8.
The gplication d unification and refactoring rules must be dways asssted by the framework
designer, who hes to interad with the environment in several steps of the process Examples
of tasks that must be asgsted by the framework designer are informing whether a methodim-
plementation varies or not and the seledion d the most adequate meta-pattern to model each

hot-spat relationship.

00 Model

Unification Rules |

Meta-Environment

Meta Information

Refactoring Rules |

Framework

Figure 7. Suppoting meta-environment architedure



ﬁ\'iewpoinl Text Tool - Netscape i ]
File Edt “iew Go Communicator Help

3 Back Fonward Reload  Home  Search  Guide Ermt Securty’ Stop m

' w!vBookmarks \&Locat\on|hltp:f;’rush.\es.inf.puc-rin.brf'Scripts!cgilua.exef’craspm’quahfy.-"ldenlilicat\onIua j
' WiewPoint Test M5 KStudio KStudio - Adm  Infoseek  AltaVista Rio intermet TV Administragdo d  Sergio Crespo H - OOHDM Manual

ViewPoint-Text-Tool |
1EWL Ol exX 00 I

=] |Document: Dione =l e Uk
Figure 8. Current implementation

3 THE WBE DOMAIN CASE STUDY

This edion pgresents the models of the analyzed WBE environments and describes the gpli-
caion d the viewpoint-based design method to generate the ALADIN framework. Six exis-
tent WBE environments have been used in the cae study. The selection d these environ-
ments was based onthreecriteria: (i) their popdarity and importance (ii) the avail ability of
documentation; and (iii ) their underlying concepts, so that environments that do nd model
new concepts have been dscarded.

Although there ae severa others environments avail able, the six seleded environments are
very representative and cover the gread majority of domain concepts © far discussed in lit-
erature (Papert, 1996. Each of these models was considered as a different viewpoint the
WBE domain, and the viewpoint unification was used to define the framework design.

Two aspeds must be mnsidered when analyzing the following models. First, except for Au-
laNet and LiveBOOKS, we do nd know the exad objed-model of the analyzed environ-
ments. The models presented here have been specified by the use of these environments. Sec-
ond, when the models are similar we just refer to the figure that describes it in order to avoid
presenting similar models twice

Sincethe objedive of our comparison d WBE environments is the definition o a framework
design, we were nat interested in a feature by fedure analysis of the environments. Only the
core antities of the WBE domain have been analyzed. A useful concept adopted throughou
all this analysis was the mncept of services. A service has been defined as an atomic func-
tionality provided by the environment. Examples of services are discussons groups, course
news, quizzes, and buletin baards.

3.1 AulaNet

AulaNet (Crespo et. a., 1999 is a WBE environment developed at the PUC-Rio Software
Engineering Laboratory. AulaNet allows svera institutions to use the environment simulta-
neously. Each institution may have several departments. The @urses are related to institu-

9



tions and ead course has assgned actors. A course @mnsists of a seledion d services. This
design structure is presented in Figure 9.

Institutions @ Departments

|

Courses ———@  Services

i

Actors

Figure 9. AulaNet OMT classdiagram
The AulaNet environment is composed o two sites: alearning site and an authoring site. The
students use the leaning site to attend a spedfic course, while the aithors use the authoring
site to crede and maintain the wurses. The dass sructure that implements both sites is
shown in Figure 10, where dass ldioms represents the suppat to multiple languages (Eng-
lish, Portuguese, and so on).

Site

ZN

Idioms Courses

Figure 10. AulaNet site dass s$ructure

3.2 LiveBOOKs

The LiveBOOKs (Cowan, 1999 distributed learning/authoring environment is a computer-
based teaching/learning and authoring system that suppats leaning and authoring adivities.
LiveBOOK class sructure is very similar to AulaNet's, except of two main dfferences: it is
does nat suppat the definition d many institutions and degpartments and the actors types are
naot restricted to student and author, as gow in Figure 11. LiveBOOKSs all ows new types to
be defined as subclasses of Actor Types.

couses O—E

Actors e .‘ ActorTypes

Figure 11. LiveBOOKSs classdiagram
3.3 Web Coursein aBox
Web Course in aBox (WCB) (http://views.vcu.edwwcb/intro/wcbintro.hml) is a wurse crea-
tion and management tod for web-asgsted delivery of instruction. The main dfference of
this environment and the other two previously presented is that in WCB the final user can
modify the visual representation (Interface) for each ore of its entities as 1own in Figure 12
andFigure 13.

10



Interface

e

I
Institutions Departments Courses Services

Figure 12. WCB interface class s$ructure

Site

I

Idioms Courses Interface

Figure 13. WCB site dass s$ructure

3.4 Web-CT

Web-CT (http://homebrew.cs.ubc.ca/lwebct/) is atod that faalit ates the creaion o sophisti-
caed WBE environments. Web-CT class s$ructure can be seen as an extension d the one pre-
sent for LiveBOOKS. The new concept is that eat service can be of two dfferent types: in-
ternal, which is implemented by the environment, and external, which is any WWW appli ca-
tion nd implemented by the environment but avail able dsewhere in the Internet. Examples of
external services are chat applications, CU-SeeMe, e-mail, and list servers. This design
structureis presented in Figure 14.

Courses /\—E

|

Actors K> @ ActorTypes

External

Internal

Figure 14. Web-CT classdiagram
3.5 LearningSpaceand Virtual-U
These two environments are put together here because they have similar class s$ructures. Lo-
tus Educdion and IBM are resporsible for the research and development of Lotus Learning-
Space(http://www.lotus.com/home.nsf/wel come/learnspace), an educaiona techndogy with
suppating services for distance elucaion.

The LearningSpace and Virtua-U (http://virtual-u.cs.sfu.cavuweb/) class sructures are es-
sentially the same & the one presented in Figure 14. However, they additionally introduce the
concepts of documents and tasks (Figure 15). The services are based on d@uments, and each
document may have various tasks assgned to it. In addition, LearningSpace allows for
documents and tasks to be dassfied in categories (Figure 16).

11



Documents

Sevices

Figure 15. LearningSpa&eand Virtual-U: services class s$ructure

Tasks

Categories Documents

Figure 16. LearningSpa&e tasks, categories, and da@uments
3.6 Theviewpoint unification
We have tried to capture the are functionality of the analyzed WBE environments to define
an ohjed-oriented framework, cdled ALADIN (Fontoura . a., 199). The viewpoint-based
design method has been applied to define the framework kernel and hd-spat structures.

Figure 17 illustrates (in an abstract way) how each ore of the anayzed environments has
been used as a viewpaint of the final framework. The basic idea was to identify a framework
that could provide dl the functionality required for generating, at least, the six analyzed envi-

ronments.
m LiveBOOKS

LearningSpace
ALADIN Framework

Figure 17. Viewpoints unifi cation (abstractly)

Before gplying the unification rules we must verify if viewpoints are @mnsistent. Classes
Tasks, Documents, and Categories (in LearningSpace and Virtual-U) are nonrorthogona to
the definition d Services in the other viewpaints. It is possble to model Tasks, Documents,
and Categories as Services in LiveBOOKS or in AulaNet. To solve this inconsistency these
classes have been discarded the template-hook model. Note that this dedsion is creative and
depend on unérstanding the domain concepts. After this modificaion the viewpoints have
become mnsistent and could be unified.

Classs Ingtitutions, Departments, Courses, Actor Types, Services, and Documents are respon-
sible for accessng their correspordent information in a database system. To provide this
functionality access methods (get/set) are present in each of these dasss. However, the d-
tributes that define these entities vary in each analyzed environment, and therefore dl the ac-
cessmethods have different signature and implementation in ead viewpaoint. Unificaionrule
number 3 may be gplied for these methods, generating the template-hook model shown in
Figure 18.

12



Institutions {-+--------------------» Departments

2 External
Courses oo Services <><:
Internal

v

Actor
Types

Actors

Figure 18. ALADIN template-hodk model
Classes Interface and Ste define the visual representation and navigational structure of the
WBE applications, respectively. Interface methods depend onthe layout structure (usually
defined by a graphical designer), which may vary for each viewpoint. Ste methods are re-
sporsible for generating the output HTML files, and may also vary from one viewpoint to
another. Therefore, unfication rule number 4 may be gplied for both Interface and Ste.
Figure 19 and Figure 20 shows the generated template-hook models.

Interface

¥ P T

Institutions Departments Courses Services

Figure 19. ALADIN interface template-hook model

Site

- v A

Idioms Courses Interface

Figure 20. ALADIN site template-hodk model
Since aaptation duing runtime is an important feaure in the WBE domain and reaursive
combinationis not required by any of the hot-spats, the separation meta-pattern was seleded
to implement al the hot-spat relationships in the template-hook model. The structure of the
final framework design is $hown in Figure 21, Figure 22, and Figure 23. The UNDEFINED
signatures and implementations, elided in the figures, will be mmpleted orly during frame-
work instantiation sincethey may vary for ead instantiated appli cation.

13



Institutions C———— e Departments

J. External

Courses &—— @ Services O<:
i Internal

Actors

Actor
Types

Figure 21. ALADIN classdiagram

Interface

N

Institutions Departments Courses Services

Figure 22. ALADIN interface dass s$ructure

Site

Idioms Courses Interface

Figure 23. ALADIN site dass s$ructure
This ®dion has shown how the design method res been succesSully applied to alarge cae
study in the WBE domain. Next sedion describes the implementation and wse of the
ALADIN framework.

4 VALIDATING THE GENERATED FRAMEWORK
To verify quality of the frameworks generated from the design method a running version
ALADIN has been implemented and tested in the creation d WBE applications.

ALADIN has been implemented in CGlLua (lersalimschy et. al., 1997 foll owing the frame-
work model design structure generated from the viewpaints unification. Two damain specific
languages (DSLs) (Hudak, 19%) have been defined to asdst itsinstantiation:

1. Educaiona Language: used in the definition d the educaional comporents (courses,
adors, services, ingtitutions and departments);

2. Navigational Language: used in the definition d the language (e.g. English, French), in-
terface (e.g. badkgroundimages, butons), and navigational structure.

The DSLs constructs have been defined form the ALADIN design. Each framework hat-spot

has an associated DSL construct. Programs written in these two DSLs are used to complete

the missng hot-spat information, marked as UNDEFINED in the framework design.

We estimate that the use of ALADIN increases the productivity by afador of three A WBE

system that would take six months to be developed may be instantiated from ALADIN in ap-

proximately two months, for example. This conclusion was based onseveral experiments de-

veloped by our research group,including the redesign of AulaNet.

14



The following subsedions describe the two DSLs and show an instantiation example.

4.1 Educational Language

Educaiona Language programs must be transformed to complete the definition d the
ALADIN hat-spats. Two files are generated from each Educational program: Database defi-
nition and Access methods. The first is used for defining the database structure that will be
used by the WBE applicaion being instantiated. The seand provides the get/set methods for
aacessng the database. Figure 24 ill ustrates this architecture.

Educational
program

A 4

Educational
language —— DSL Transformation

definition
Database Access
definition methods

Figure 24. Educationd languagp architedure
The following program code is written in Educational Language.

Institution "PUC-RIO", "Pontificia Universidade Catolica - Rio de Janeiro", "PUC.gif";
Department "CETUC", "TELECOMUNICATIONS", "CETUC.GIF",
Department "CS", "COMPUTER SCIENCE", "CS.GIF";
Actor Type Teacher, "Teacher"
{ name String;
descr iption Memo;
Photo Image; };
Actor Type Student, "Student"
name String;
description Memo;
period Integer;
address String;
average Real; };

Course

{ name String;
code String;
syllabus Memo;
description Memo;
image Image; };

Service "CourseNews"

{ news Memo;
initialDate Date;
finalDate Date; }

read = [ Student ]

write = [ Teacher ];

Each language @nstruct is used to complete the misgng information ore hat-spaot. The defi-
nition d the murse dtributesin the operator Course is an example.

The exeaution d the Database definition code generates the database that will be used by the
WBE applicaion leing instantiated. The aurrent implementation & ALADIN generates Mi-
crosoft Accessdatabases. One database is generated for each instantiated applicaion.

The foll owing Lua methods (lersalimschy et. a., 1996, which have been generated from the
previously shown Educational program, are part of the Accessmethods used to accesscourse
definitions. Similar accessmethods are generated for the others hat-spats. These methods en-
cgpsulate the SQL commands, allowing ALADIN users to generate WBE environments

15



withou having any knowledge in manipulating databases.

luaTable = getCourse(hame, code, syllabus, d escription, image)
addCourse(name, code, syllabus, description, image)
updateCourse(oldName, name, code, syllabus,d escription, image)

deleteCourse(name)

4.2 Navigational Language

ALADIN allows the generation d one WWW site for ead type of ador defined in the sys-
tem. Normally two sites are dways present in the existent WBE environments: a leaning site
and an authoring site. However, ALADIN all ows other ador types to have their own site. As
an example we muld define asite for the monitors and aher site for the secretaries. All the
sites generated by the ALADIN framework can define many navigational structures.

The Navigational Language wmde is transformed into HTML and Luafiles that will define the
application interface and navigational structure. These files use Access methods generated
from the Educaional program accessall the required information.

An example of Navigational Language program is provided next.

Language "English"

Language "Portuguese”

Text "titlel", " English", "Resources"
Text "titlel", "Portuguese”, "Recursos”
Image "img1", " English", "c:\ing\img.gif"
Image "img1","Portuguese","c:\port\img.gif"
a := template("c:\templates\temp1.html")
b := template("c:\templates\temp2.html")
¢ := template("c:\templates\temp3.html")
b.next:=c

b.previous = a

This language provides an operator for defining the languages suppated by the environment
(language). The texts and images used by the environment are defined in the various lan-
guages. The HTML files are in fact templates, which have special tags for the texts and im-
ages. In this example the tag <ALADIN-TEXT> titlel </ALADIN-TEXT> would be replaced
by the string Resources, if the seleded language had been English, and by the string Recur-
sos, if the seleded language had been Portuguese.

The same is valid for the hypertext links that define the goplicaion ravigational structure. In
the @ove example, the tag <ALADIN-LINK> prevous </ALADIN-LINK> in template
temp2.itml would be replaced by the string <A HRE-="c:\templates\temp1.itml"> prevous
</A>, while the tag <ALADIN-LINK> next </ALADIN-LINK> would be replaced by the
string <A HREF="c:\templates\temp3.Hml"> next </A>.

This approach all ows the definition d all the texts, images, and navigational linksin aunique
file, providing more readability and flexibility. Since the site interface and ravigational
structure are defined separate form the HTML templates, they may completely redefined
withou impading in the rest of the system.

In order to instantiate ALADIN the goplicaion developer has to define an Educaional pro-
gram, aNavigational program, and all the required HTML templates.

4.3 ALADIN instantiation example

This dion describes how the AulaNet authoring site (http://www.les.inf.puc-rio.br/aulanet)
has been redesigned using the ALADIN framework. The general structure of the aithoring
siteis snown in Figure 25.

16



Identification p Course Ge_neral > Service . Service
Information Selection Configuration

Figure 25. AulaNet authoring site: globd view

In the identificaion step the author has to provide auser-id and password to the system. In
the murse general information step al the basic information abou the @murse must be wm-
pleted, such as course name, description, and syllabus’. In the service selection phese the
author has to inform the system what services will be used for the murse being developed.
Finally, in the service configuration phase, eadch seleded service must be @nfigured. Once dl
these steps have been completed the urse is ready and its leaning site can be generated.
The detail ed structure for the service selection step is $own in Figure 26, and HTML code
(with embedded CGILua) generated by the ALADIN framework is presented next.

show available assign service to
services > couse
(resourses.html) (assign.lua)

Figure 26. Resource seledion: detail ed structure

* services.html *

<HTML><HEAD>
<TITLE>Show Available Ser vices</TITLE>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000"
topmar gin=0 leftmargin=0>
<H1> Please select the services you want to use in your course </H1>
<FORM NAME="data" TARGET="_top" METHOD="post" ACTION="assign.lua">
<I-$$
-- Select all the services available to the
-- current institution. The result of this
--sele ction is stored in a Lua table.
table = getService(currentinstitution)
while (table ~= nil) do
write('<td valign=middle>")
write('<INPUT TYPE="Checkbox"
NAME="..table[0].." VALUE=""..table[0]..">")
write('</td>")
moveNext(table)
end
$$-->
<INPUT TYPE= "Submit" VALUE= "Next">
</FORM></BODY></HTML>

* assign.lua *

table = getService(currentinstitution)
while (table ~= nil) do
-- check if the resource is select or not
-- if true add the resource to the course
if (cgi.table[0] = "ON") then
has(course, table[0])
moveNext(table)
end

The generated HTML and Luafiles are simple and easy to be understood since they use Ac-
cessmethods high-level constructsinstead of low-level database operations.

5 ANALYZING THE DESIGN METHOD
The ALADIN framework was the first large cae study developed using the viewpoint-based

! The fields to be wmpleted in this gep are defined by the Course operator, in the Educa-
tional program.

17



design method. The unificaion transformations have been applied withou tod suppat since
the environment described in sedion 2.6was nat avail able & the time.

The gplicdion d the unificaion rules was very straightforward because the viewpaints had
similar design structures. However, the verification d viewpoint inconsistencies is a very
hard task that can only be performed by domain experts. In this case study the verificaion
that Services and Tasks, Documents and Categories were nonorthogonal classes has only
been passhble because we were familiar with the semantics of these amncepts.

The ALADIN implementation and the definition d the DSLs to assst its instantiation proc-
esswere wmpletely based onthe generated design model. ALADIN has been successully
used in the development of several web-based appli cations, smplifying the construction these
appli cation and reducing development costs (Fontoura d. a., 1998. It has not been used ou-
side our research group since its main pupose is to alow for experimentation with educa
tional environments developed at our Lab.

Severa other small case studiesin ather domains have been developed at our research group,
generating good results. However, in order to further evaluate the merits and the limitations
of the method rew large case studies need to be developed. We ae now evaluating the gpli-
cabili ty of the gpproadc for the dectronic commerce domain. This projed is being developed
with the suppat of the viewpoint unificationtoo described in this paper.

6 RELATED WORK

The model for framework development based on vewpaints proposed in (Alencar et. a.
1999 was used as our first approach for framework design, and the aurrent version has been
refined through the development of several case studies.

Currently there ae very few framework design methods. A pattern-based description o some
accepted approaches underlying framework design can be found in (Roberts and Johnson,
1997). However, existing methods do nd addressthe problem of identifying the possble re-
lationships between kernel and hd-spat el ements.

Some work in systematization d the gplicaion d patterns to implement framework hat-
spats can be fund in (Schmid, 1997. Other interesting aspeds regarding framework design
such as framework integration, version control and ower-featuring can be foundin (Codenie
et. a., 1997.

7 CONCLUSIONSAND FUTURE WORK

This paper shows how unification rules can be used to generate frameworks from an initial
set of viewpaints. We believe that this approach leads to a more eplicit definition o the
coll aboration ketween the framework elements and helps the designer to better implement the
framework hat-spots through the use of meta-patterns. Currently comparable methods are d-
most norexistent or in their infancy. The analysis process presented here is a large caed
study that helped us to validate our viewpoint-based design method.

Since the WBE domain is gill not completely understood the need for an environment that
suppats fast development of alternative WBE environments by non-programmers is a desir-
able goal. One alvantage of our approach is that we can experiment with dfferent environ-
ments whil e minimizing development costs. Another advantage is that teaders and education
researchers can develop their own environments, with littl e help from software enginees.

The viewpoint analysis presented here and the associated conceptual model are the theoreticd
basis for the production d such a framework. The ALADIN framework is completely devel-
oped and hes been tested in the generation d new WBE environments (Fontoura €. al.,
1998.

18



A new version d the method suppating environment that provides cooperative work cgpa-
biliti es and graphicd representation is now being developed in Java. Thistod will be used to
experiment with dfferent objet-oriented models and evaluate the impact of these models to
framework design. More concretely, the tod will provide an unform way of validating how
other design techniques can enhance framework design, since unification and refadoring
rules that can profit from these models will be compared through the eavironment.

The formalization d unificaion rules and a systematic gpproach for generating DSLs from
the framework design can be foundin (Fontoura, 1999.

8 REFERENCES

Alencar, P. Cowan, D. Nelson, T. Fontoura, F. and Lucena, C., Viewpoints and Frameworks
in Comporent-Based Design, in Building Application Frameworks: Objed-Oriented Foun-
dations of Framework Design, John-Wiley, (1999.

Ainsworth, M., Cruickshank, A. H., Groves, L. J., and Wallis, P. J. L., Viewpoint spedfica
tionand Z, Information and Stiware Techndogy, 361), 4351 (19%).

Andredta, A. Carvalho, S. and Ribeiro, C., An Object-Oriented Framework for Locd Search
Heuristics, 26h TOOLS, IEEE Ress 3345 (1998.

Casais, E., An incremental class reorganization approach, ECOOP 92 Proceedings, Ledure
Notesin Computer Science, 615, 114132(1992.

Codenie, W. Hond, K. Steyaert, P. and Vercammen, A., From Custom Applications to Do-
main-Spedfic Frameworks, Comrmunications of the ACM, 40(10), 71-77,(1997).

Cordy, J. and Carmichad, 1., The TXL Programming Language Syntax and Informal Seman-
tics, Tedhnicd Report, Quean’ s University at Kingston, Canada, 1993.

Cowan, D., An Object-Oriented Framework for LiveBOOKSs, Technicd Report, CS-98, Uni-
versity of Waterloo, Ontario, Canada, 1998.

Crespo, S., Fontoura, M., and Lucena, C., AulaNet: An Objed-Oriented Environment for
Web-based Education, Internationd Conference of the Learning Siences 1998 304306
(1998.

Filkelstein, A., Kramer, J., Nuseibeh, B., Filkelstein, L., and Goedicke,M., Viewpoints. A
Framework for Integrating Multiple Perspectives in System Development, Internationd
Journal of Sdtware Engineeing andknowledge Engineeing, 2(1), 31-58 (1993).

Fontoura, M., A Systematic Approac for Framework Development, Ph.D. Thesis, Departa-
mento de Informatica, PUC-Rio, 1999.

Fontoura, M., L. Moura, Crespo, S., and Lucena, C., ALADIN: An Architecture for Learn-
ingware Applications Design and Instantiation, MCC3598, Monagrafias em Ciéncia da
Computacé, Departamento de Informatica, PUC-Rio, 1998 .

Gamma, E., HeIm, R., Johrmson, R. and Vlisgdes, J., Design Patterns, Elements of Reusable
Objed-Oriented Sdtware, Addison-Wesley, 1995.

Hamu, D. and Fayad, M., Achieving Bottom-Line Improvements with Enterprise Frame-
19



works, Comrmunications of ACM, 41(8), 110113,(1998).

Hudak, P., Building Domain-Spedfic Embedded Languages, ACM Computing Suiveys,
28A(4) (1996.

lersalimschy, R., Borges, R., and Hester, A. M., CGILua A Multi-Paradigmatic Tod for Cre-
ating Dynamic WWW Pages, SBES' 97 — Brazilian Symposium on Software Engineering,
(1997.

lerusalimschy, R., Figueiredo, L. H., and Celes, W., Lua - an extensible extension language,
Sdtware: Practice & Experience 26(6), 635652 (199%).

Johrson, R., Frameworks = (Comporents + Patterns), Communications of the ACM, 40(10)
(1997.

Johrson, R. and Opdyke, W. F., Refactoring and aggregation, Objed Techndogies for Ad-
vanced Software, First JSSST International Sympasium, Ledure Notes in Computer Science,
742, 264278(1993.

Kiczaes, G. des Rivieres, J. and Bobrow D., The Art of Meta-object Protocol, MIT Press
1991.

Papert, S., The Conneded Family, Longstred Press 1996.

Parnas, D. Clements, P. and Weiss D., The Moduar Structure of Complex Systems, |IEEE
Transactionson Sdtware Engineeing, SE-11, 259266, (1985.

Preg W., Framework Patterns, Sigs Management Briefings, 1996.

Ripper, P., V-Market: A Framework for Agent Mediated E-Commerce Systems based on
Virtual Marketplaces, M.Sc. Dissertation, Departamento de Informética, PUC-Rio, 1999.

Roberts, D. and Johrson, R., Evolving Frameworks: A Pattern Language for Developing
Objed-Oriented Frameworks in Pattern Languages of Program Design 3 Addison-Wesley,
(1997.

Rumbaugh, J. Jambson, I. and Booch, G., The Unified Modeling Languag Reference Man-
ual, AddisonWesley, 1998.

Schmid, H., Systematic Framework Design by Generali zation, Commnunications of the ACM,
40(10), 4851, (1997).

Vlisdgdes, J., Generalized Graphicd Object Editing, Ph.D. Thesis, Department of Eledrical
Engineering, Stanford University, 1990.

Theauthors:

Marcus Fontoura, is a researcher at the Software Engineering Lab, Computer Science De-
partment, PUC-Rio, Brazil, and a post-doctoral researcher at the Computer Science Depart-
ment, Princeton University, U.S.A.

Sergio Crespo isaPh.D. candidate & the Computer Science Department, PUC-Rio, Brazil .
20



Carlos Jose Lucena, is afull professor at the Computer Science Department, PUC-Rio, and
the diredor of the Software Engineering Lab at PUC-Rio, Brazil .

Paulo S. C. Alencar, is an asociate research professor at the Computer Systems Group,
University of Waterloo, Canada.

Donald D. Cowan, is a professor emeritus at the Computer Science Department, University
of Waterloo, and the director of the Computer Systems Group, Canada.

21



