
Analyzing the
performance of top-k
retrieval algorithms

Marcus Fontoura
Google, Inc

This talk

● Largely based on the paper
○ Evaluation Strategies for Top-k Queries over

Memory-Resident Inverted Indices, VLDB 2011

● No Google-specific data or algorithm!

Goal

● Highlight the parameters used to
characterize the performance of retrieval
systems

● Analysis of a few top-k algorithms

Outline

● Problem representation
● DAAT approaches
● TAAT approaches
● Hybrid approaches
● Conclusion

Top-k Query Evaluation

● Given a query Q and a document corpus
D return the k documents that have the
highest score according to some scoring
function score(d, Q)

● Scoring is based on intersecting the terms
in the query with the documents

● Query evaluation cost =
 Index access cost +
 Score computation cost

Memory Resident Indices

● Many applications need very low latency
and very high throughput
● Cannot tolerate even a single disk seek

● Disk access kills both latency and
throughput

● Caching is not effective in the presence of
real time updates

● No previous study on DAAT vs TAAT on
memory resident indices

Dot Product Scoring Function

 The document and query weights could be
derived from standard IR techniques, such
as TFIDF, language models, etc

Document d = {d1 … dN}
Query Q = {q1 … qN}

Score (d, Q) =

Document Corpus Matrix
t1 t2 t3 t4 t5 t6 t7 t8 … tN

d1
d2
d3
…

dM

documents

terms

Document Corpus Matrix
t1 t2 t3 t4 t5 t6 t7 t8 … tN

d1
d2
d3
…

dM

documents

terms

Query = {t4, t6, t7}

DAAT (Document-at-a-time)
t1 t2 t3 t4 t5 t6 t7 t8 … tN

d1
d2
d3
…

dM

documents

terms

Query = {t4, t6, t7}

TAAT (Term-at-a-time)
t1 t2 t3 t4 t5 t6 t7 t8 … tN

d1
d2
d3
…

dM

documents

terms

Query = {t4, t6, t7}

Document Corpus Representation

<1, 3>
<2, 4>

<10, 2>

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

● Document corpus is a sparse matrix representation
● Represent the document corpus matrix using posting lists
● Each term has list of documents and metadata
● Posting List Entry has: <DocumentID,
WeightOfTermInDocument>

Query = {t4, t6, t7}

t4 t6 t7

Cursor

● Cursor a pointer into a posting list

● Important cursor operations
● Ct.next() // move to next posting
● Ct.fwdBeyond(docid d) // move to posting with
 // docid >= d

DAAT Algorithms - Naive
● Use a min-heap maintaining the top k

candidates
● Let θ be the min score on heap
● Use N-way merge to compute score of each

document and insert it into heap if score > θ
● Every posting for every query term is touched

● Index access cost is proportional to sum of
sizes of postings list of all query terms.

● All documents containing any of the query
terms are scored
● Scoring cost is proportional to the number

of documents scored

DAAT Algorithms - Naive

<1, 3>
<2, 4>

<10, 2>

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

Top K Heap of
Documents

DAAT Algorithms - WAND
● Compute upper bound contribution of each query term:
 UBt = Dtqt

● Sort the term cursors by its current document and identify
a pivot term p such that:

● Upper bounds of cursors including this pivot could enter
top k

DAAT Algorithms - WAND
● The current document for the pivot term is the next

possible candidate to score
● If all the cursors before pivot point to the pivot

document, score it otherwise pick a term before pivot
and move it beyond pivot document

● After each cursor move the terms are resorted and pivot
selection is continued

DAAT Algorithms - WAND

<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

B

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

C

UBc = 7

● Compute upper bound contribution of each query term
UBt = Dtqt

DAAT Algorithms - WAND

<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

B

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

C

UBc = 7

● Sort the term cursors by its current document
and identify a pivot term p such that

Sorted Cursors

C B A

docid 5 7 10

Top K Heap

docid Score(d, Q)

1 13(θ)

2 14

pivot term

7+5+4 > 13 (θ)

DAAT Algorithms - WAND

<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

B

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

C

UBc = 7
Sorted Cursors

B C A

docid 7 10 10

Top K Heap

docid Score(d, Q)

1 13(θ)

2 14

pivot term

● If all the cursors are before pivot point to the pivot document, score
it, otherwise pick a term before pivot and move it beyond pivot
document

● After each cursor move the terms are resorted and pivot selection is
continued

DAAT Algorithms - mWAND

● Traditional WAND picks one term at a time to
move to/ahead of the pivot document
● This reduces potential disk I/O
● Optimizes for reducing index access at the expense

of doing more pivot selections

● mWAND – for memory resident indices, index
access is less significant. Hence we propose a
variation to move all terms between 1 and p
beyond the pivot document.
● Increases cost of index access
● Minimize the number of pivot selections

DAAT Algorithms - mWAND

<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

B

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

C

UBc = 7
Heap

docid Score(d, Q)

1 13(θ)

2 14

Sorted Cursors

C B A

docid 5 7 10

WAND – May pick term B or C to
move to beyond pivot doc id 10.

Sorted Cursors

C A B

docid 5 10 11

mWAND – Moves both B and C
beyond pivot doc id 10.

Sorted Cursors

C A B

docid 10 10 11

pivot term

Dataset

● S = Small
● L = Large
● I = Index
● Q = Query

● Example: SI LQ means small index, large
(many terms per query) query set
○ Other combinations left as an exercise for the

interested reader

● Full description of dataset characteristics in
the paper

WAND vs mWAND

mWAND (red) is 2x faster than WAND (blue)

WAND vs mWAND

WAND vs mWAND

DAAT Algorithms – max_score
(Turtle &Flood)

● Sort the term cursors by the size of their posting list (only once)
● Maintain remaining upper bounds RUB for each term such that

● Split the terms into two groups required and optional. The optional
group is the set of terms from Ck through CN such that these terms
are not enough to allow a document into the top k

● Evaluate the terms in required group in a naïve manner, but skip
evaluating documents whose current cumulative score after
evaluating cursor Ct, having Scoret + UBt < θ (infeasible documents)

● Move the optional cursors to the current candidate document
selected from the required group and score the document.

● Repeat until done

DAAT Algorithms – max_score

<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

B

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

C

UBc = 7
Heap

docid Score(d, Q)
1 13(θ)

2 14

Sorted Cursors
A B C

docid 10 7 5

UB 4 5 7

RUB 12 7 0

Split Cursors
A B C

docid 10 7 5

UB 4 5 7

RUB 12 7 0

Evaluate required: Payload C
A
 (2)+ RUB

A
 (5+7=12) > θ (13)

Move optional: Move to doc 10 or beyond on C
B
 and C

C

 and score doc 10.

optionalrequired

Comparison of DAAT Algorithms

● mWAND and DAAT max_score both substantially better than Naïve DAAT
● For LI LQ data, mWAND is 23% faster than DAAT max_score

max_score

Comparison of DAAT Algorithms

Comparison of DAAT Algorithms

● mWAND always skips more postings
● For small queries more complex code for

finding the pivot does not payoff

TAAT Algorithms - Naive

● Query terms are evaluated one at a time
● An accumulator array A to used to keep track of

the partial scores of each document
● Once all terms are evaluated, the top-k documents

from the accumulator array are returned
● Every posting for every query term is touched

● Index access cost is proportional to sum of
sizes of postings list of all query terms

● All documents containing any of the query terms
are scored
● Scoring cost is proportional to the number of

documents scored

TAAT Algorithms – Buckley & Lewit

● Query terms are evaluated one at a time in
decreasing order of upper bounds

● A min heap of size k+1 is maintained having the
documents with the highest score so far

● After processing the ith term, the query processing
could be terminated if the following condition is
met:

● If the kth document’s score is greater than k+1th
document’s score by more than sum of the
remaining terms’ upper bound, then we have
found the top-k documents

TAAT Algorithms – Buckley & Lewit

<1, 3>

<4, 9>

<7, 3>

<10,
2>

A
UBA =

9

<1, 5>
<2, 1>
<4, 7>

B
UBB =

7

<1, 4>
<4, 1>
<5, 2>
<6, 2>
<10,
1>

C
UBC =

4 i docid A[1] A[2] A[4] A[5] A[6] A[7] A[10]
1 1 3 0 0 0 0 0 0
1 4 3 0 9 0 0 0 0
1 7 3 0 9 0 0 3 0
1 10 3 0 9 0 0 3 2
2 1 8 0 9 0 0 3 2
2 2 8 1 9 0 0 3 2
2 4 8 1 16 0 0 3 2

Accumulator array at each iteration

TAAT Algorithms – TAAT
max_score (Turtle & Flood)

● Query terms are evaluated one at a time in decreasing order of
postings list sizes.

● Phase 1: Continue processing terms until the following condition is
met (kth document is better than sum of all unprocessed term upper
bounds)

● After phase 1, there could be no documents in top-k that are not
already present in the accumulator array

● Phase 2: Obtain exact scores by score only documents found in
phase 1 for the rest of the terms
● Need to sort list of documents from phase 1 – candidate list.
● Pruning the candidate list: Document d can pruned (if infeasible)

during phase 1 if the following holds (its score + all unprocessed
terms is less than the kth best)

TAAT Algorithms – TAAT
max_score

<1, 3>

<4, 9>

<7, 3>

<10,
2>

A
UBA =

9

<1, 5>

<2, 1>

<4, 7>

B
UBB =

7

<1, 4>

<4, 1>

<5, 2>

<6, 2>

<10,
1>

C
UBC =

4 i docid A[1] A[2] A[4] A[5] A[6] A[7] A[10]
1 1 5 0 0 0 0 0 0
1 2 5 1 0 0 0 0 0
1 4 5 1 7 0 0 0 0
1 1 8 1 7 0 0 0 0
2 4 8 1 16 0 0 0 0
2 7 8 1 16 0 0 3 0
2 10 8 1 16 0 0 3 2

Accumulator array at each iteration

Candidate list: 1, 2, 4, 7, 10

Pruned Candidate list: 1, 4

mTAATmax_score

● Traditional TAAT max_score designed to reduce disk I/O
● Minimize cursor movements in 2nd phase using the candidate list to help

skipping documents
● Candidate list in phase 1 has to be sorted.
● Pruning the candidate list to reduce the number of documents to sort.

● Index access is not significantly expensive in memory resident
indices.

● In many cases sequential read and filter is faster than sort and skip
● Hardware prefetching makes sequential scans very fast

● Pruning the candidate list requires additional computation and
branching instructions.

● Branch mis-predictions are very expensive in pipelined architectures.
● mTAAT max_score – same as TAAT max_score except:

● No candidate pruning
● Phase 2 – no sorting of phase 1 docs: do sequential scan of nonzero phase 1

documents to drive scoring on remaining terms

TAAT max_score vs mTAAT
max_score

#terms to evaluate in 2nd phase

SQ LQ

SI 0.13 3.44

LI 0.48 3.66

●The number of terms to evaluate in 2nd
phase is too little to justify the overhead of
maintaining a sorted candidate list.

● mTAATmax_score (red) is 46% faster for LI
LQ test

Comparison of TAAT Algorithms

● mTAATmax_score 49% faster than Buckley & Lewit for LI LQ test

mTAATmax_score

Buckley & Lewit

Comparison of TAAT Algorithms

Comparing DAAT and TAAT Algorithms

Cache misses

Hybrid Algorithms
Intuition: It’s very fast to process small posting lists and groups of small

posting lists. Use this for better lower bounds on θ (min score for
candidate docs)

● Split the query terms into two groups – short, and long based on number of
postings for each query term and a configurable threshold

Q = Qt≤T U Qt>T

● Evaluate Qt≤T group using any of the TAAT or DAAT algorithms
● Use the partial score of the kth element as the lower bound θ when processing

the Qt>T group
● A new virtual or real posting list is created which has all the documents

evaluated for Qt≤T group – call it {cl} which stands for candidate list
● A DAAT algorithm is used to evaluate the new query

QDAAT = Qt>T U {cl}
● Seeding the DAAT algorithm with an initial good lower bound θ enables more

skipping

Diagram of Hybrid Method

<1, 3>
<3, 4>

<5, 2>

B
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

C

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

D

UBc = 7

<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

Short posting lists evaluated to calc θ and
used to create one virtual or merged posting list V

V

UBB = 6

Then use V (along with the long posting lists) with a DAAT algorithm using θ
LB

Optimizing DAAT – Hybrid
Algorithms

● DAAT-mWAND – uses naïve DAAT for Qt≤T
and mWAND for QDAAT

● TAAT-mWAND – uses naïve TAAT for Qt≤T
and mWAND for QDAAT

● DAAT-DAAT max_score – uses naïve DAAT
for Qt≤T and DAAT max_score for QDAAT

● TAAT-DAAT max_score – uses naïve TAAT
for Qt≤T and DAAT max_score for QDAAT

Hybrid Algorithms - Latency

● For LI LQ test, DAAT-mWAND 10.7% faster than mWAND
 and 35.8% faster than DAAT max_score

Hybrid Algorithms – Skipped Postings

Conclusion

● Evaluated traditional DAAT and TAAT
algorithms in an in-memory index production
setting

● Proposed adaptations to the existing
algorithms that are better suited for index
accesses over memory

● Achieved 60% latency improvements over
traditional algorithms

● Proposed new hybrid technique to speed up
DAAT algorithms by segmenting query terms
● Achieves 20% incremental latency gains

