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This talk

● Largely based on the paper
○ Evaluation Strategies for Top-k Queries over 

Memory-Resident Inverted Indices, VLDB 2011

● No Google-specific data or algorithm!



Goal

● Highlight the parameters used to 
characterize the performance of retrieval 
systems 

● Analysis of a few top-k algorithms



Outline

● Problem representation
● DAAT approaches
● TAAT approaches
● Hybrid approaches
● Conclusion



Top-k Query Evaluation

● Given a query Q and a document corpus 
D return the k documents that have the 
highest score according to some scoring 
function score(d, Q)

● Scoring is based on intersecting the terms 
in the query with the documents

● Query evaluation cost = 
     Index access cost +
     Score computation cost



Memory Resident Indices

● Many applications need very low latency 
and very high throughput
● Cannot tolerate even a single disk seek

● Disk access kills both latency and 
throughput

● Caching is not effective in the presence of 
real time updates

● No previous study on DAAT vs TAAT on 
memory resident indices



Dot Product Scoring Function

  The document and query weights could be 
derived from standard IR techniques, such 
as TFIDF, language models, etc

Document d = {d1 … dN}
Query Q = {q1 … qN}

Score (d, Q) =
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DAAT (Document-at-a-time)
t1 t2 t3 t4 t5 t6 t7 t8 … tN

d1
d2
d3
…

dM

documents

terms

Query = {t4, t6, t7}



TAAT (Term-at-a-time)
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Document Corpus Representation
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● Document corpus is a sparse matrix representation 
● Represent the document corpus matrix using posting lists
● Each term has list of documents and metadata
●  Posting List Entry has:  <DocumentID, 
WeightOfTermInDocument>

Query = {t4, t6, t7}

t4 t6                             t7



Cursor

● Cursor a pointer into a posting list

● Important cursor operations
● Ct.next()                          // move to next posting 
● Ct.fwdBeyond(docid d)   // move to posting with
                                          // docid >= d



DAAT Algorithms - Naive
● Use a min-heap maintaining the top k 

candidates 
● Let θ be the min score on heap
● Use N-way merge to compute score of each 

document and insert it into heap if score > θ
● Every posting  for every query term is touched

● Index access cost is proportional to sum of 
sizes of postings list of all query terms.

● All documents containing any of the query 
terms are scored
● Scoring cost is proportional to the number 

of documents scored



DAAT Algorithms - Naive
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DAAT Algorithms - WAND
● Compute upper bound contribution of each query term:
                                 UBt = Dtqt

● Sort the term cursors by its current document and identify 
a pivot term  p such that:

● Upper bounds of cursors including this pivot could enter 
top k



DAAT Algorithms - WAND
● The current document for the pivot term is the next 

possible candidate to score
● If all the cursors before pivot point to the pivot 

document, score it otherwise pick a term before pivot 
and move it beyond pivot document

● After each cursor move the terms are resorted and pivot 
selection is continued



DAAT Algorithms - WAND
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● Compute upper bound contribution of each query term 
UBt = Dtqt
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<1, 3>
<2, 4>

<10, 2>

A
UBA = 4

<1, 4>
<2, 3>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

B

UBB = 5

<1, 6>
<2, 7>

<5, 1>

<6, 7>

<10, 1>

<11, 7>

C

UBc = 7

● Sort the term cursors by its current document 
and identify a pivot term  p such that
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DAAT Algorithms - WAND
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● If all the cursors are before pivot point to the pivot document, score 
it, otherwise pick a term before pivot and move it beyond pivot 
document

● After each cursor move the terms are resorted and pivot selection is 
continued



DAAT Algorithms - mWAND

● Traditional WAND picks one term at a time to 
move to/ahead of the pivot document 
● This reduces potential disk I/O
● Optimizes for reducing index access at the expense 

of doing more pivot selections

● mWAND – for memory resident indices, index 
access is less significant. Hence we propose a 
variation to move all terms between 1 and p 
beyond the pivot document.
● Increases cost of index access
● Minimize the number of pivot selections



DAAT Algorithms - mWAND
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mWAND –  Moves both B and C 
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Dataset 

● S = Small
● L = Large
● I = Index
● Q = Query

● Example: SI LQ means small index, large 
(many terms per query) query set
○ Other combinations left as an exercise for the 

interested reader

● Full description of dataset characteristics in 
the paper



WAND vs mWAND

mWAND (red) is 2x faster than WAND (blue)



WAND vs mWAND



WAND vs mWAND



DAAT Algorithms – max_score
(Turtle &Flood)

● Sort the term cursors by the size of their posting list (only once)
● Maintain remaining upper bounds RUB for each term such that

● Split the terms into two groups required and optional. The optional 
group is the set of terms from Ck through CN such that these terms 
are not enough to allow a document into the top k

● Evaluate the terms in required group in a naïve manner, but skip 
evaluating documents whose current cumulative score after 
evaluating cursor Ct, having Scoret + UBt < θ (infeasible documents)

● Move the optional cursors to the current candidate document 
selected from the required group and score the document.

● Repeat until done



DAAT Algorithms – max_score
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Comparison of DAAT Algorithms

● mWAND and DAAT max_score both substantially better than Naïve DAAT
● For LI LQ data, mWAND is 23% faster than DAAT max_score

max_score



Comparison of DAAT Algorithms



Comparison of DAAT Algorithms

● mWAND always skips more postings
● For small queries more complex code for 

finding the pivot does not payoff



TAAT Algorithms - Naive

● Query terms are evaluated one at a time
● An accumulator array A to used to keep track of 

the partial scores of each document
● Once all terms are evaluated, the top-k documents 

from the accumulator array are returned
● Every posting  for every query term is touched

● Index access cost is proportional to sum of 
sizes of postings list of all query terms

● All documents containing any of the query terms 
are scored
● Scoring cost is proportional to the number of 

documents scored



TAAT Algorithms – Buckley & Lewit

● Query terms are evaluated one at a time in 
decreasing order of upper bounds

● A min heap of size k+1 is maintained having the 
documents with the highest score so far

● After processing the ith term, the query processing 
could be terminated if the following condition is 
met:

● If the kth document’s score is greater than k+1th 
document’s score by more than sum of the 
remaining terms’ upper bound, then we have 
found the top-k documents



TAAT Algorithms – Buckley & Lewit
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TAAT Algorithms – TAAT 
max_score (Turtle & Flood)

● Query terms are evaluated one at a time in decreasing order of 
postings list sizes.

● Phase 1: Continue processing terms until the following condition is 
met (kth document is better than sum of all unprocessed term upper 
bounds)

● After phase 1, there could be no documents in top-k that are not 
already present in the accumulator array

● Phase 2:  Obtain exact scores by score only documents found in 
phase 1 for the rest of the terms
● Need to sort list of documents from phase 1 – candidate list.  
● Pruning the candidate list: Document d can pruned (if infeasible) 

during phase 1 if the following holds (its score + all unprocessed 
terms is less than the kth best)



TAAT Algorithms – TAAT 
max_score
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Candidate list: 1, 2, 4, 7, 10

Pruned Candidate list: 1, 4



mTAATmax_score

● Traditional TAAT max_score designed to reduce disk I/O
● Minimize cursor movements in 2nd phase using the candidate list to help 

skipping documents
● Candidate list in phase 1 has to be sorted.
● Pruning the candidate list to reduce the number of documents to sort.

● Index access is not significantly expensive in memory resident 
indices.

● In many cases sequential read and filter is faster than sort and skip
● Hardware prefetching makes sequential scans very fast

● Pruning the candidate list requires additional computation and 
branching instructions.

● Branch mis-predictions are very expensive in pipelined architectures.
● mTAAT max_score – same as TAAT max_score except:

● No candidate pruning
● Phase 2 – no sorting of phase 1 docs:  do sequential scan of nonzero phase 1 

documents to drive scoring on remaining terms



TAAT max_score vs mTAAT 
max_score

#terms to evaluate in 2nd phase

SQ LQ

SI 0.13 3.44

LI 0.48 3.66

●The number of terms to  evaluate in 2nd 
phase is too little to justify the overhead of 
maintaining a sorted candidate list.

● mTAATmax_score (red) is 46% faster for LI 
LQ test



Comparison of TAAT Algorithms

● mTAATmax_score 49% faster than Buckley & Lewit for LI LQ test

mTAATmax_score

Buckley & Lewit



Comparison of TAAT Algorithms



Comparing DAAT and TAAT Algorithms



Cache misses 



Hybrid Algorithms
Intuition:  It’s very fast to process small posting lists and groups of small 

posting lists.  Use this for better lower bounds on θ (min score for 
candidate docs)

● Split the query terms into two groups – short, and long based on number of 
postings for each query term and a configurable threshold

Q = Qt≤T U Qt>T

● Evaluate Qt≤T group using any of the TAAT or DAAT algorithms
● Use the partial score of the kth element as the lower bound θ when processing 

the Qt>T group
● A new virtual or real posting list is created which has all the documents 

evaluated for Qt≤T  group – call it {cl} which stands for candidate list
● A DAAT algorithm is used to evaluate the new query

QDAAT = Qt>T U {cl}
● Seeding the DAAT algorithm with an initial good lower bound θ enables more 

skipping



Diagram of Hybrid Method
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Optimizing DAAT – Hybrid 
Algorithms

● DAAT-mWAND – uses naïve DAAT for Qt≤T 
and mWAND for QDAAT

● TAAT-mWAND – uses naïve TAAT for Qt≤T 
and mWAND for QDAAT

● DAAT-DAAT max_score – uses naïve DAAT 
for Qt≤T and DAAT max_score for QDAAT

● TAAT-DAAT max_score – uses naïve TAAT 
for Qt≤T and DAAT max_score for QDAAT



Hybrid Algorithms - Latency

● For LI LQ test, DAAT-mWAND 10.7% faster than mWAND 
  and 35.8% faster than DAAT max_score



Hybrid Algorithms – Skipped Postings



Conclusion

● Evaluated traditional DAAT and TAAT 
algorithms in an in-memory index production 
setting

● Proposed adaptations to the existing 
algorithms that are better suited for index 
accesses over memory

● Achieved 60% latency improvements over 
traditional algorithms

● Proposed new hybrid technique to speed up 
DAAT algorithms by segmenting query terms
● Achieves 20% incremental latency gains


