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ABSTRACT

Sponsored search is one of the major sources of revenue for
search engines on the World Wide Web. It has been observed
that while showing ads for every query maximizes short-
term revenue, irrelevant ads lead to poor user experience
and less revenue in the long-term. Hence, it is in search
engines’ interest to place ads only for queries that are likely
to attract ad-clicks. Many algorithms for estimating query
advertisability exist in literature, but most of these methods
have been proposed for and tested on the frequent or “head”
queries. Since query frequencies on search engine are known
to be distributed as a power-law, this leaves a huge fraction
of the queries uncovered.

In this paper we focus on the more challenging problem
of estimating query advertisability for infrequent or “tail”
queries. These require fundamentally different methods than
head queries: for e.g., tail queries are almost all unique and
require the estimation method to be online and inexpensive.
We show that previously proposed methods do not apply to
tail queries, and when modified for our scenario they do not
work well. Further, we give a simple, yet effective, approach,
which estimates query advertisability using only the words
present in the queries. We evaluate our approach on a real-
world dataset consisting of search engine queries and user
clicks. Our results show that our simple approach outper-
forms a more complex one based on regularized regression.
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1. INTRODUCTION

Sponsored search is the dominant form of textual adver-
tising on the Web in terms of revenue. It involves display-
ing advertisements (ads) alongside the results returned by
search engines. Under the pay-per-click mechanism, search
engines get paid every time a user clicks on a displayed ad.
Clearly, sponsored search is useful for search engines since
it is a source of revenue for them. Moreover, it is beneficial
for users as well since it helps them in finding relevant prod-
ucts/services, especially for queries with commercial intent.
It also aids advertisers in reaching the right set of users.

The success of sponsored search heavily relies on display-
ing relevant ads for appropriate queries. Previous studies [6],
have shown that irrelevant or unwanted ads are useless to
search engines since they do not attract clicks. They may
even be harmful since they degrade the quality of search
experience driving users away. Even users who continue us-
ing the search engine despite seeing irrelevant ads might get
“trained” to ignore the sponsored sections of the search re-
sult page, impacting the long term revenue of the search
engine. Hence, estimating the following two properties are
of key importance for an advertising engine:

e Query advertisability: Certain queries are more suit-
able for advertising than others. For instance, queries
such as “digital camera” and “car insurance” are more
likely to be satisfied by sponsored search results than
queries like “hotmail”. Gauging the query advertis-
ability correctly helps the advertising engine decide
whether to show ads or not (or how many ads to dis-
play), and thus only showing ads to which the user will
react. Moreover, this reduces the computation cost of
ad selection for queries that should not display ads.

Ad relevance and clickability : Once the advertis-
ing engine has determined that the query is adverti-
sable, it attempts to retrieve the ads which are most
likely to satisfy the user’s information need. This typ-
ically involves ranking the ads in the system based
on various factors like their syntactic match with the
query, their estimated CTRs (click-through rates) from
historical data, a user’s past behavior etc. Several
methods have been proposed for doing this ad selection
and CTR estimation [4, 9, 14, 15, 18, 23, 24].



ESTIMATING ADVERTISABILITY FOR TAIL QUERIES.

In this paper we focus on the first task above, that of es-
timating Query Advertisability. There is past work on iden-
tifying whether user queries have an underlying commercial
intent, the intention to purchase a product or a service [2, 6,
10]. However, in addition to the underlying intent, adverti-
sability should also capture other factors that influence the
likelihood of engaging the user; the suitability of the current
ad supply, the ability of the ad selection algorithms to select
good ads, and even business rules. Therefore, we consider
the ad clicks obtained in response to a query as a proxy for
its advertisability. Specifically, in this paper we define ad-
vertisability of a query as the probability of seeing a click
on any sponsored search ads displayed on the result page of
the query.

Past work on modeling advertisability of queries have fo-
cused on using features derived from a plethora of informa-
tion about them; the set of all retrieved ads in [6] and the
set of all retrieved search results in [10]. Moreover, these
approaches determine advertisability from an offline analy-
sis of the historical click data. These methods have only
been tested and shown to work well on frequently occur-
ring queries. However, in this paper we focus on the more
challenging problem of estimating advertisability of infre-
quent or tail queries, so called because they form the “heavy
tail” of the power-law distribution of query frequencies on
a search engine. The above mentioned approaches are not
applicable to these tail queries as they are too rare to have
significant historical data. Furthermore, tail queries are al-
most always unique, thus requiring an online estimation pro-
cedure (i.e., estimation is performed when users issue the
queries). Since search users are very sensitive to any latency
in the results presentation, under any reasonable system in-
frastructure the online procedure must be inexpensive and
cannot employ complex query expansion methods. Hence we
study the problem of estimating query advertisability using
the query keywords only, similar to [2, 22].

TECHNICAL CHALLENGES AND SOLUTIONS.

Most of the queries in the datasets used in this study con-
sist of 3-4 words and have occurred 1-2 times. This results
in the two principal challenges of the problem: noisy ground
truth due to the rarity of the queries, and sparseness of fea-
tures due to the short query lengths.

The noise in the ground truth, i.e. the estimates of query
advertisability, results from the low number of impressions
for each query. This makes not only the learning difficult,
but also affects the testing methodology. For instance, an
oracle is also unlikely to match the advertisability estimates
of individual queries derived using our data. One of our
key insights is that though the advertisability of each indi-
vidual query is noisy, when many queries are put together
they provide a fairly stable advertisability estimate. Hence,
given an estimation policy we evaluate it by looking at the
aggregate advertisability of the top-ranked queries (instead
of their individual advertisability).

In order to learn in the presence of noisy ground truth,
we propose a word-based advertisability model that employs
the above “grouping” insight (in Section 2). We estimate the
parameters of this model via a maximum likelihood based
method. As a competitive baseline we also present a regres-
sion based methodology that combines state-of-art elements
from machine learning literature (in Section 3). Finally, or-
thogonal to these two methodologies we study an additional

way of dealing with noise: learning from the head queries
(which have reliable advertisability estimates) and then ap-
plying the model on the tail queries (see Section 2.2.1). From
our experiments we found that this does not work well, since
tail queries exhibit fairly different vocabulary and character-
istics than the head queries.

We handle the sparsity of features in different ways for the
two learning methodologies. For the maximum likelihood
estimation method, we show that simplifying assumptions to
remove interactions among the features result in improved
accuracy. In the regression methodology, we handle sparsity
using two methods. One way is to perform regression under
a L'-regularization (also known as Lasso). A second way is
to make the features denser by clustering them [8, 22, 27].
In Section 3.3, we give an LDA-based method of clustering
tail queries and a learning method that maps queries into
latent clusters and learns a model using these cluster-based
features.

CONTRIBUTIONS.
We make the following contributions in the paper:

1) We investigate and formalize the problem of estimating
advertisability of tail queries using its keywords only. The
problem is challenging due to the inherent noise and sparsity
present in the data.

2) We propose a simple, yet effective, word-based model to
estimate query advertisability. Our estimation method is
robust to noisy ground truth as well as sparse features.

3) We put together a competitive baseline regression-based
approach that deals with sparsity by: (a) incorporating reg-
ularization in the model and (b) using LDA-derived latent
topics.

4) We give an evaluation framework for the problem using a
large scale dataset from a real-world search engine. Our ex-
tensive empirical results show that our word-based model
outperforms the more expensive and complex regression-
based approach.

2. WORD-BASED QUERY ADVERTISABIL-
ITY MODEL

Our goal in this work is to make predictions for Query
Advertisability, which is the probability of the event when
one or more ads displayed for a query are clicked. In this
section, we give a model to accomplish this.

2.1 Model Formulation

In Section 1 we discussed the challenges of learning and
evaluation in the presence of noisy ground truth and sparse
features. Further, we used these to motivate our use of a
word-based model. In this section, we start with a discussion
of the additional properties that we want our word-based
query advertisability model to have.

A basic desired property would determine the influence
each word exerts on the advertisability of the query it is part
of. Some words indicate that the user is looking for a cer-
tain product, e.g., “download”, “buy” and “compare”, while
other words like “insurance”, “flight” and “hotel”, are associ-
ated with products/services that are known to be amenable
to advertising. When we look at the queries that contain
these words and their corresponding ad-clicks, we observe
that these words have heavy positive influence on the query



advertisability. Similar observations have been made in [2].
Hence, a useful basic property to have is, P1: a single “ad-
vertisable word” should be capable of ensuring high adverti-
sability for a query containing it. On the flip side, consider
some words from [2] that lead to low ad-clicks on queries,
such as “weather”, “free”, “university” etc. From our data,
we find that queries containing these words could poten-
tially still be highly advertisable; for example, “weather in
fiji”, “free download”, and “university admissions”. Hence,
a useful second property to have is, P2: while some words
do not contribute to a query’s advertisability, no one word’s
presence should reduce the advertisability. Finally, the effect
of a word on a query advertisability might depend on other
words present, like effect of “music” in the queries “music
ringtones” and “music lyrics”. However, because the word
occurrences in tail queries are extremely sparse we do not
incorporate such dependencies into the model.

Conforming to these desirable characteristics we give the
following query advertisability model. In the model we say
that each word in a query has a certain propensity of at-
tracting a click on an ad, say c(w). Let us denote the ad-
vertisability of query ¢ by c¢(q). Say, the query ¢ consists
of the words wi,ws...w,. Thus, under the independence
assumption, each word in the query independently attracts
an ad-click for the query (with probability ¢(w)). Hence, the
advertisability (i.e., the probability of the ads displayed for
query ¢ to be clicked) can be written as:

n

e(g) =1 =T (1 = e(w)) (1)

i=1

A key property of this formulation is that, all things be-
ing equal, it favors longer queries (e.g., if all ¢(w;)’s were the
same, c(q) gets larger as n gets larger). While this makes
sense in most cases, it can score longer queries containing
words with mediocre click propensities higher than shorter
ones with few good terms. To avoid this shortcoming, we in-
troduce parameter k where k denotes the maximum number
of words from the query that can take part in the clicking
process. Under this constraint:

e(q) = max (1 ~Tla- c(w») (2)

weS

where S C ¢ and |S| < k.

2.2 Parameter Estimation

In Equation 1 we presented the model to combine each
query word’s contribution to the query advertisability.! We
can estimate the parameters of this model by computing
the maximum likelihood estimate of the training data. The
training data consists of queries and their associated click or
impression events. Say, s(q) denotes the number of instances
when query ¢ received an ad-click, while n(g) denotes the
number of instances when it did not. Given a dataset of

'In Equation 2 we use the k “best” terms to compute query
advertisability, but we will use Equation 1 to estimate the
model parameters.

queries Q and click events, its likelihood can be written as:

C(s(@.n(@)iew) = ] (1[0~ e@wy)™

q€eQ weq

o (TIa ewn)"™

weq

On taking the logarithm of the both sides:

logL(s(q),n(q);c(w)) = Y s(q)-log(1 = [T(1 = c(w)))

q€Q weq
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Taking derivatives with respect to c¢(w) results in:
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Here ¢ 5 w is the set of queries that contain the key-
word w. Solving this complex set of equations is difficult,
especially since the feature combinations used in queries are
sparse and the ground truth is unreliable. Hence, we ap-
proximate this solution by assuming that each instance of
a click or not click is a referendum on the advertisability
of each keyword in the query independently. This has the
same effect as replicating each query once for each term con-
tained in it, with each such replication having just one of the
keywords. Under this assumption we obtain:

2 gzw S(@)
> gsw(3(0) +1(q))

In other words, the contribution of a word to advertisabil-
ity is the fraction of times it is present in a query instance
which attracted an ad-click.

2.2.1 Choice of Training Set

As mentioned earlier, tail queries have very few impres-
sions, the words combinations are extremely sparse, and thus
their advertisability estimates tend to be very noisy. Clearly,
learning from such a dataset is difficult and may lead to a
poor model estimation.

An alternative approach is to learn the model from the
head queries, which tend to have significant number of oc-
currences in the historical data. For these queries we can
compute advertisability estimate with confidence. The dis-
advantage of learning from such a dataset is that it is very
different from the test set of tail queries in terms of vocabu-
lary, word combinations, and maybe even word advertisabil-
ity scores. This difference could counteract the advantages
gained from reliable ground truth when learning on the head
queries.

Each training set has its own advantages and disadvan-
tages. While the training set of tail queries is noisy, the
training set of head queries may exhibit different behavior
and not generalize well on the test set. In Section 4.5 we
evaluate our model while training on both the head and tail
set of queries.

c(w) =

3)

3. REGRESSION-BASED QUERY ADVER-
TISABILITY MODEL



In Section 2, we proposed a simple word-based model for
predicting query advertisability. In this section, we present
alternative approach that combines state of the art elements
from machine learning literature. First, we will formulate
the task of predicting query advertisability as a regression
problem. Then we will present a few ideas to help the regres-
sion model handle sparsity: regularization and clustering.

3.1 Linear Regression Model

Just as in the word-based model in Section 2, we say that
each word in a query has a certain propensity of attracting
a click on an ad; we denote this with c(w). The advertis-
ability of query ¢, denoted by ¢(gq), can then be computed
quite naturally by summing of the individual word adverti-
sability values [19, 20]. Under this model we consider words
in queries as binary features and the weight of each word is
given by its advertisability. Say, the query ¢ consists of the
words w1, ws ... wn, then c(q) = >°, c, c(w).

Hence, we can write the following set of linear equations:

Vg, Z c(w) = c(q) + €4

where €,’s are the error terms.
Under the squared loss function this problem can be for-
mulated as:

(cta) = S eu)’

weq

arg min
c(w)
qeQ

This set of linear equations can be solved using existing
methods. However, we face another challenge here which
is that due to the sparsity in word occurrences. A tail
query consists of 3-4 words on average, which is a very lit-
tle amount of text. Moreover, tail queries significantly dif-
fer from each other, thus resulting in a large vocabulary of
words. For instance, in our experiments we noted that the
number of unique words is more than half of the number
of unique queries. In other words, if we represent a query
in this feature space, it will consist of a couple of non-zero
entries for the words present in the query, while the rest of
the thousands of dimensions will be all zero. This is likely
to make this set of equations under-determined. Next we
consider a couple of ways to handle this issue of sparsity.

3.2 Regularized Regression

When the number of parameters is large, the estimates
of linear regression exhibit high variance which is undesir-
able. One way of controlling this by incorporating regular-
ization while training. Under L1 regularization (also known
as Lasso [12, 26]) this can be written as:

2
arg min Z (c(q) — Z cw)
o) q€eQ weq
subject to:

Zc(w) <t

w

where ) is a given constant. This is also written as:

(c(q) - Z cw)2 + )\Z c(w)
Q w

weq

e

where A is the shrinkage parameter. When A is close to 0,
this behaves like regular linear regression, while as A goes
to infinity it forces many c(w)’s to be zero. Hence, this
performs feature selection for us, though unlike traditional
feature selection methods this is not limited to completely
picking or dropping a feature.

3.3 Inferring Topics from Queries

An alternative method of dealing with sparsity is by map-
ping the sparse high-dimensional feature space to a dense
low-dimensional space. Principal component analysis is of-
ten used in doing so while maximizing the variance of the
data captured in the low-dimensional space [17]. Latent se-
mantic analysis is also used for dimension reduction [11, 16].
It transforms the sparse word-document matrix to a more
dense topic-document matrix, where each topic is a latent
concept that is derived using the co-occurrence information.

In this paper, we use Latent Dirichlet Allocation to ob-
tain topics from queries. This is a generative model for the
documents where the topic distribution is assumed to have
a Dirichlet prior [5]. We describe it in more details next.

3.3.1 Latent Dirichlet Allocation

In this model a document is assumed to be generated from
a mixture of topics, where each topic has its own word dis-
tribution. In particular, we can write the probability of the
i*" word in the document as (given in [13]):

P(w;) = ZP(wz|Zz = J)P(z = j)

where T is the number of topics. Variable z; denotes the
latent topic from which word w; is generated. It is equal to
topic j with prior probability P(z; = j), in which case the
word has P(w;|z; = j) of being generated given the word
distribution of the j*® topic.

Let T denote the number of topics and D denote the num-
ber of documents. In the LDA model P(w|z) is modeled
using a set of T' multinomial distributions ¢ over the vocab-
ulary W (one multinomial ¢ per topic). The ¢ distribution
of a topic gives the distribution of words under the topic.
P(z) is modeled using a set of D multinomial distributions,
denoted by 0%, over T topics (one multinomial  per docu-
ment). The multinomial distribution % gives the mixture
of T topics present in the document d, i.e., 9;.‘1) = P(z =j).
Both 6 and ¢ distributions have Dirichlet priors [13]. In
brief, the model can be written as:

wilzi, )~  Discrete(¢p©?))
~  Dirichlet(S3)
2|04 ~  Discrete(6(4))
0 ~  Dirichlet(c)
where o and (8 are the hyperparameters.

3.3.2 Deriving LDA Topic-based Features

We use LDA to find a low dimensional representation of
a query. In particular, we run LDA over a training set of
queries for T number of topics. After the end of run, we
have a topic distribution of each query ¢, P(z|¢). Each
topic makes a latent concept and the topic distribution of
query P(z|q) gives a representation of the query in this low-
dimensional concept space. For each query, these posterior
topic-membership values can be used in two ways: they can
be added to the query words as additional binary features,



or used as a sole representation of a query. In this paper
we experiment with both methods. We can use these query
representations in our model from Section 3.1. In particu-
lar, we find the advertisability of each topic using regularized
regression and use them to compute the advertisability of a
query.

The advantage of this method is that it is able to relate
query keywords with each other in an intelligent manner.
For example, we found that in our experiments a topic con-
sisted of words like “ipod”, “iphone”;, “samsung” etc. So,
using just the co-occurrence information of data, LDA was
able to connect these words together which are clearly very
related. This helps significantly since new queries that fall
into this cluster will be able to use the advertisability in-
formation estimated for all queries that fall into the cluster,
hopefully leading to robust results. In Section 4.3 we empir-
ically evaluate this approach.

4. EXPERIMENTS

In this section we evaluate the word-based model we pro-
posed for query advertisability with the state-of-art regres-
sion based methodology.

4.1 Empirical Setup

DATASET.

We train and evaluate our approach on a real-life search
engine data. We collected a sample of queries issued to a
major search engine over a period of 7 days. The dataset
consists of more than 5 million query impressions. We also
recorded the ad clicks for these queries during this period.
Of these queries we put those queries into the tail set which
have less than 2 impressions per day on average. The goal
of this study is to predict the advertisability on these tail
queries. The aforementioned tail set consists of more than 2
million unique queries. For our experiments we placed half
of the queries in the training set and the rest in the test set.

The average query length is 3.3 which shows the amount
of sparsity in the data. The average number of impressions
per query is 1.55. As mentioned earlier, given such a few
impressions for a query it is difficult to estimate its adver-
tisability with any certainty. This presents challenges while
learning as well as evaluation. In view of this, we propose
our evaluation metric next.

EvALUATION METRIC.

A conventional way of evaluating our advertisability esti-
mation methods would be to take the L'-error or L*-error
of the predicted (é(q)) and “true” advertisability of queries
(c(q)). However, since our focus is on tail queries which have
very few impressions (as shown above), it is not possible to
estimate their true advertisability. In other words, given
the noise in “true” advertisability estimated from our data
an oracle is also unlikely to match them.

To deal with this problem, we opt to evaluate the predic-
tion of a method with respect to a group of queries instead
of the individual queries. In particular, given method w we
rank the queries in order of their decreasing predicted ad-
vertisability values é(g)’s. Starting from the top, let S(r, 7))
and F(r,m) be the cumulative total of number of ad-clicks
and the total number of all impressions till rank r. Due to
aggregation over a group of queries, S(r,7) and F(r,m) are
fairly stable for large values of r and amenable for conduct-
ing analysis. Clearly, the best method is the one which maxi-
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Figure 1: Performance of the word-based advertis-
ability model for different values of k.

mizes S(r, 7) for all values of F'(r, 7). In case there is no clear
best method, we can plot S(r,7) on the y-axis and F(r,7)
on the x-axis and compute area under the curve (AUC) to
succinctly summarize the performance of a method. The
best policy for a given impression threshold, say 7, is the
one which maximizes S(r, ) for F(r,m) = 7.

Another reason this evaluation method is suitable is that
launch criteria in real-world systems are likely to be framed
w.r.t. to the relationship between S(r,7) and F(r,x). In
order to preserve the user’s search experience, an advertising
system controller will likely limit the number of instances of
queries in which ads are shown. The controller would then
be interested in determining the algorithm that yields the
most clicks in the fixed number of impressions. On the flip
side, the number of clicks might be fixed in order to make
revenue numbers.

4.2 Evaluation of Word-based Advertisability
Model

In this experiment we evaluate the performance of our
word-based advertisability model presented in Section 2. We
tokenize each query into words by treating whitespace for
word boundaries. Since many of our queries are URLs, we
tokenize these queries at punctuation characters. We remove
the stop-words and stem the remaining words.

For this experiment we learn word advertisability scores
(c(w)’s) from the training set using the approximate method
(Equation 3) of Section 2.2. Then we evaluate the method on
the test set. Figure 1 shows the performance of our method
for different values of k. Recall that k is a parameter in our
method which limits the number of words from a query that
can contribute towards its advertisability. The x-axis in the
figure is the cumulative fraction number of impressions till
a given rank (F(r,m)), while the y-axis is the cumulative
fraction of clicks (S(r,)).

Note that all of our model variants are significantly above
the straight line which denotes the random method (i.e.,
predict the advertisability at random). This is encouraging
since it shows that the advertisability can be estimated quite
well using the query keywords only. As expected the curves
in the figure are convex. This happens because when the
number of impressions is small (x-axis), the clicked impres-
sions (y-axis) are aggregated over queries present on the top
of the ranked list. These queries are predicted to have high



advertisability, thus resulting in a high average click per im-
pression (i.e., the slope of the curve). However, as the num-
ber of impressions increases, queries with low advertisability
start getting accounted for and hence, they bring down the
average click per impression.

From the figure it is clear that k = 2 performs the best.
Intuitively, this makes sense because when k is too small,
the method does not give due credit to queries with more
advertisable words. On the other hand, when k is too large,
long queries get an unfair advantage. Still, the model looks
fairly stable when k is in a reasonable range (i.e., 1 to 3).

4.3 Evaluation of Regression-based Approach

In Section 3 we gave a regression-based approach to pre-
dict query advertisability. Due to sparsity the simple linear
regression is unlikely to work, hence we experiment with the
L'-regularized regression. We perform L'-regularization us-
ing the SMIDAS software [25] where SMIDAS stands for
“Stochastic Mirror Descent made Sparse”.

Furthermore, as discussed in Section 3.3.2, we use LDA
to derive dense topic-based features. In particular, we rep-
resent each query as a mixture of latent topics derived using
LDA and the query words. We then learn the model over
this hybrid low-dimensional query representations using the
SMIDAS software as above. In Table 2 we show some topics
and the top words in them as derived using LDA. Clearly, the
topics are fairly coherent and meaningful. We experimented
with constructing a 100 and a 1000 topics; the results were
very similar and we present the ones with 100 topics. We
also experimented with using just the low-dimensional rep-
resentations of a query in the regression formulation, but
the results were much worse; we do not present those results
here.

In Figure 2 we plot the performance of the regression-
based approach with and without the topic-based features.
As we can see adding the topic-based features has so signif-
icant effect on the accuracy of the prediction task. This is
in contrast to the results obtained in [22], where keyword
cluster based features were shown to have significant im-
pact on accuracy. We posit that this is because our focus
is on tail queries; while the topics constructed by LDA are
themselves meaningful, the uniqueness of tail queries means
that inferring the topics for each tail query is extremely dif-
ficult. Hence, the knowledge contained in sparse word-based
features subsumes the contribution of dense topic-based fea-
tures. We leave further investigation of this phenomena for
future work.

4.4 Comparison of Word-based and Regression-

based Models

Above we evaluated the two different methods for estimat-
ing query advertisability. In Table 1 we show the popular
words with top advertisability under the two methods. Note
that both methods are doing a reasonably good job of find-
ing highly advertisable words such as rental, vacation, travel
etc. Even though the top features from the two estimation
methods look fairly similar, the weights of many other fea-
tures show differences.

In particular, we plot the performance of the two ap-
proaches, word-based approach and L'-regularized regres-
sion, in Figure 3. It is clear that the word-based method
performs better in comparison to its state-of-art counter-
part. This shows that careful modeling of the properties of
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Figure 2: Performance of the regression-based ap-
proach with and without LDA-derived topic fea-
tures.
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Figure 3: Performance comparison of the word-
based model and regression-based approach.

the problem can result in a simple, yet effective, approach
that can outperform a method based on much more complex
machine learning primitives.

4.5 Choice of Training Set

So far we have been learning the model from the training
set of tail queries. Another data set that can be employed
for training is the head set which consists of all the head
queries. The advantage of this set is that it consists of fre-
quent queries and has relatively stable query advertisability
values (c(q)). The disadvantage is that it is not similar to
the test set which consists of tail queries only.

We perform learning from these training sets using model-
based method for k = 2. Figure 4 shows the performance
for different training sets. Note that the training set of
head queries performs worse. This shows that the naive
approach of learning from head queries and applying the
learned model on tail queries does not work well since they
exhibit different characteristics than the head queries. This
does not imply that head queries are useless for our task; in-
stead, it means that head queries are not sufficient by them-
selves and must be used in conjunction with tail queries to
aid the learning.
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Figure 4: Performance of word-based model under
different training sets.

[ Method [ Top Words ]
Word-based | cheap, boot, ticket, discount, bag, bed,
Model laptop, wholesale, chevrolet, airline,

rent, flight, coupon, shower, rental,
nike, vacation, loan, hotel, furniture,
diet, cruise, outlet, dress, job, phone,
printer, hp, truck, car, price, dvd

L chair, costume, store, hotel, wholesale,
regularized diet, dress, rental, boot, camera, part,
Regression sale, cheap, price, inn, bed, ticket,

travel, rent, shower, cruise, bathroom,
batteries, ring, vegas, furniture, car,
free, shoes, curtain, loan, discount

Table 1: Words with high advertisability estimates
under the two prediction methods.

[ Topic [ ‘Words ]
free, game, online, download, video

honda, toyota, bmw, yamaha, tire

ipod, iphone, samsung, sim, touch

truck, chevy, chevrolet, engine, parts

diet, product, pill, lose, fat, weight

coffee, table, top, bed, chair, antique
lyrics, love, song, victoria, secret

coupon, pizza, code, family, restaurant
county, court, sheriff, public, office, clerk
job, office, apply, description, salary
phone, number, service, verizon, sprint
loan, money, student, mortgage, finance,
grant, aid

13 california, sacramento, pittsburgh, river-
side, buffalo

14 army, base, navy, military, force, nation

15 digital, camera, review, batteries, samsung
16 lose, weight, blood, pressure, sugar, dia-
betes, skin, pill

17 sony, camera, digital, photo, memory,
screen, film, batteries

18 hawaii, beach, resort, ski, spa, car, rental,
hotel, vacation

19 software, printer, dell, monitor, screen,
driver, laptop, computer

20 phone, service, motorola, verizon, sprint,
cell, mobile, wireless, call
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Table 2: Some LDA-derived topics and their top
words.

5. RELATED WORK

Sponsored search is an active area of research. Several

studies have been published recently that focus on the spon-
sored search advertising [1, 6, 7, 21, 22, 24]. We classify the
related work along the following aspects and distinguish our
work from them.

MODELING AD-SPECIFIC CTR.

Most prior art [7, 21, 22, 24] in sponsored search deals
with estimating the CTR of a given query-ad pair; this es-
timate is often used to display the ads with the highest pre-
dicted CTR for a given query. In this work, we are inter-
ested in predicting the advertisability of queries, which we
define as the probability of seeing an event in which one of
the ads displayed for the query gets clicked. Gauging the
query advertisability correctly helps the advertising engine
decide whether to show ads or not (or how many ads to
display), and thus only showing ads to which the user will
react. Moreover, this reduces the computation cost of ad
selection for queries that should not display ads.

MODELING COMMERCIAL INTENT OF USER QUERIES.

Another line of related work has focused on identifying
queries with commercial intent. An approach for detect-
ing the commercial intent is proposed in [10]. They define
the term OCI (Online Commercial Intention) and present a
framework of building machine learning models to learn OCI
based on the Web page content. They use that framework
to detect the commercial intent of queries, which is related
to the problem we solve in this paper. In [3] the authors an-
alyze the click-through behavior of ads to characterize and
predict query intent. An analysis of the contributions of the
different query terms and their corresponding click rates on
commercial intent queries is presented in [2]. In a follow-up
work [1] the authors examine detecting commercial intent by
building a classifier based on editorial judgments of the com-
mercial intent of the queries. They show that those queries
that are characterized as commercial have higher CTR than
the others.

Our work differs form this set of works in a few ways.
First, we focus on modeling query advertisability, which in
addition to the underlying intent, also captures all the fac-
tors that influence the likelihood of engaging the user; the
suitability of the current ad supply, the ability of the ad
selection algorithms to select good ads, and even business
rules. Because of this we consider the ad clicks obtained
in response to a query as a proxy for its advertisability.
Hence, unlike past work that has relied on using human
judgments for learning, in our approach we use the click
data directly, without using a human understandable defini-
tion of the property of interest. Thus we identify directly the
queries for which the users would be inclined to click on ads.
Last, we focus specifically on the more challenging problem
of modeling for tail queries. These queries, due to their rar-
ity and the sparseness of their term combinations present
very different problems than considered in past work. In
this paper we give some solutions to these problems.

MODELING USING RICH QUERY FEATURES.

In most past work, modeling of commercial intent behind
queries has focused on using features derived from a plethora
of information about them; the set of all retrieved ads in [6]
and the set of all retrieved search results in [10]. Moreover,
these approaches determine advertisability from an offline
analysis of the historical click data. These methods have
only been tested and shown to work well on frequently oc-
curring queries. However, in this paper we focus on the



more challenging problem of estimating advertisability of
tail queries. The above mentioned approaches are not appli-
cable to these tail queries since they are too rare to have sig-
nificant historical data. Furthermore, tail queries are almost
always unique, thus requiring an online estimation procedure
(i.e., perform the estimation when users issue the queries).
Since search users are very sensitive to any latency in the re-
sults presentation, under a reasonable system infrastructure
the online procedure must be inexpensive and cannot em-
ploy complex query expansion methods. Hence we study the
problem of estimating query advertisability using the query
keywords only.

REGRESSION WITH CLUSTER-BASED FEATURES.

Our work is most close to the work in [22], where the au-
thors propose to the clustering of the bid phrases of ads in
estimating CTRs. Both top-down and bottom up hierarchi-
cal clustering are applied. The CTR of a bid phrase is then
calculated as a linear combination of the predicted CTR and
the CTR of its cluster. The results show that the smoothing
helps the estimates for rare bid phrases and it slightly de-
creases the precision for common bid phrases. In this paper
we update this approach by performing a more sophisticated
topic modeling using LDA, and feeding the results of it into
a state of the art learner based on regularized regression. We
show that our our simple, yet effective, word-based model
outperforms this regression/clustering based approach via
empirical results in Section 4.

6. SUMMARY

In this paper we focused on the problem of estimating
the advertisability of tail queries. Furthermore, due to some
exogenous practical constraints, we performed the estima-
tion using the query keywords only. We discussed how noisy
ground truth and sparsity in the data make this problem dif-
ficult and techniques from past work do not apply well to our
scenario. We showed how to deal with problems associated
with tail queries by proposing a words-based query adver-
tisability model. We gave a maximum likelihood method
of learning the model. We also gave a competitive baseline
methodology based on a regression formulation of the prob-
lem that used state-of-art machine learning approaches to
deal with sparsity of data: (a) incorporating L'-regularization
in the model training and (b) finding latent topics using
LDA. We conducted extensive experiments on real data to
evaluate our model. Our results are encouraging and show
that the advertisability of queries can be estimated pretty
accurately using their keywords only. We also compared
different model estimation methods and study the effect of
regularization, clustering, and training set selection.
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