Efficiently Evaluating Complex Boolean Expressions

Yahoo! Research
Marcus Fontoura, Suhas Sadanadan, Jayavel Shanmugasundaram, Sergei Vassilvitski, Erik Vee, Srihari Venkatesan and Jason Zien
Agenda

• Motivation and problem definition
• Algorithms
• Experiments
Agenda

- Motivation and problem definition
- Algorithms
- Experiments
Simple example

- Display advertising

- Ads: Boolean expressions (contracts)
 - age IN {young}
 - age IN {old} AND income IN {high, veryHigh}
 - income IN {high} AND browser NOT IN {ie}

- Publishers: assignments
 - age = old; income = high; browser = firefox
Simple example

• Display advertising

• Ads: Boolean expressions (contracts)
 \[\text{age \text{IN} \{young\}}\]
 \[\text{age \text{IN} \{old\} \text{AND income \text{IN} \{high, veryHigh\}}}\]
 \[\text{income \text{IN} \{high\} \text{AND browser \text{NOT_IN} \{ie\}}}\]

• Publishers: assignments
 \[\text{age = old; income = high; browser = firefox}\]
More complex example

• Display advertising exchange

age IN {young} OR income IN {high}

age IN {young, old} AND interest IN {NFL, NBA}
More complex example

- Boolean expressions model the type of inventory sold by each node

- Pub: age IN {young} OR income IN {high}
- Net: age IN {young, old} AND interest IN {NFL, NBA}
- Adv:
More complex example

- Each Boolean expression can be a DNF/CNF
- Contracts for the publisher are “complex” expressions

![Diagram with nodes and edges connecting Pub, Net, Net, and Adv with boolean expressions]

- age IN {young} OR income IN {high}
- age IN {young, old} AND interest IN {NFL, NBA}
Other examples

• Automatic targeting in display advertising
 • e.g. machine generated expressions to maximize click-through
• Information dissemination in social network graphs
State-of-the-art

• There are existing solutions for efficiently evaluating CNF and DNF expressions

• Content-based publish-subscribe systems

• Normalizing complex Boolean expressions into DNF incurs in an exponential blow-up in size
DNF growth

• In KB, averaged over 20 DNFs of each size
• Data set is realistic
Problem definition

- Evaluate complex Boolean expressions (e.g. AND of DNFs)
- Modeled as a tree of AND/OR nodes, where leafs are conjunctions of IN and NOT_IN operators
- Given an assignment, retrieve all valid expressions
Intuition

• (Offline) Annotate the conjunctions with their position on the complex Boolean expression tree

• Evaluate conjunctions (leafs) using a state-of-the-art algorithm

• Evaluate the trees bottom-up, using the retrieved conjunctions and their positions
Agenda

• Motivation and problem definition
• Algorithms
• Experiments
Agenda

• Motivation and problem definition
• Algorithms
• Experiments
Online problem

• Given a set of valid conjunctions, is the Boolean expression satisfied

• Tree is never explicitly represented
Algorithm 1: Dewey ids

- Assign Dewey ids for every node in the expression tree
- Ordering children of a node
Algorithm 1: Dewey ids

- Alternating AND/OR trees
- * denotes last child of an AND node
Algorithm 1: Dewey ids

- Index evaluator will return the leaf nodes, which are the matching conjunctions
Algorithm 1: Dewey ids

- Index evaluator will return the leaf nodes, which are the matching conjunctions
Algorithm 2: Interval ids

- We map each Boolean tree to a one dimensional interval \([1,M]\)
- \(M\) is the maximum number of leaves
- Tree is satisfied if there is a subset of intervals that cover all integer points on \([1,M]\) without overlap
Algorithm 2: Interval ids

- Look at: [1-5] [6-14] [15-M] : all integer points covered without overlap
Assigning intervals

- Recursive procedure
- Children of an OR inherit the parent interval
Assigning intervals

- Recursive procedure
- Children of an AND partition the interval
Slightly more complex example

- B & D are not enough to satisfy, since intervals overlap
- D & E & F are OK, since intervals don’t overlap
Example

• Suppose intervals returned are
 • \([1, 1], [1, 4], [5, 5], [6, 10]\)
 • Final matched array: 1 1 0 0 1 1 0 0 0 0 1
Agenda

- Motivation and problem definition
- Algorithms
- Experiments
Agenda

• Motivation and problem definition
• Algorithms
• Experiments
Data

• Generated a synthetic data set of expressions based on real logs
• Depth of the tree between 1 and 4
• Typical number of children of nodes between 1 and 4
Performance of different methods

- Running time in ms (y axis) vs. tree depth (x axis). Scan does not scale wrt time
DNF performance

- Running time in ms (y axis) vs. tree depth (x axis)
Interval and Dewey

• Running time of the tree evaluation in ms (y axis) vs. #boolean expressions in test
Conjunction matching time

- Running time of the tree evaluation in ms (y axis) vs. tree depth
Excluding conjunction matching

![Graph showing data for Interval and Dewey]