Azure’s VM Allocator Internals

Marcus Fontoura
Microsoft

Thomas Moscibroda, Yang Chen, et al.
Microsoft Research

Mark Russinovich, Jim Johnson, Nar Ganapathy,
Ashwin Kulkarni, et al.

=" Microsoft e

Motivation

* Whatis Azure
* A bit of history

 Where we are going

Azure Global Footprint

PR i.‘v - 2wih
49 wl e :
North Central US ; -
lllinois ’ -
North Europe
4 T — West Europe

‘ Canada Central Netherlands

Toronto Canada East
Quebec City A
- China North *

Central US
L} lowa

- US Gov
lowa

. Beijing
S . . Japan East
China South Saitama

Shanghai

WestUs Y | = East US (d)
California g | Virginia . s
; India Central 2
Pune I

\ e East US 2
India South

South Central US ‘ i Virginia g
A Texas U-S qu India West Yo" Chennai
Virginia : ¥
Mumbai N . East Asia

Hong Kong
3

SE Asia & ‘
Singapore :
-_—.

- —

1

Il Operational
M Announced/Not Operational
* Operated by 21Vianet

Australia East
New South Wales

Brazil South

Sao Paulo Australia South East

Victoria

m 100+ datacenters
m Top 3 networks in the world

Azure Scale

NlOO,OOO 20 wittion

New Azure customer SQL database hours
subscriptions/month used every day

>6O Trillion

Storage objects
in Azure

>7 Trillion

Storage transactions
every month

425 willion 60sillion

Azure Active Hits to Websites run on
Directory Users Azure Web App Service

57%

Of Fortune 500 Companies use
Microsoft Azure

>1 Trillion

Messages delivered every
month with Event Hubs

Resource utilization in Azure

* Each 1% of utilization gain results in millions of S savings

Resource utilization in Azure

* Each 1% of utilization gain results in millions of S savings

[N

VM allocation algorithms are crucial for operating Azure
effectively!

A /

AZURE INTERNALS

Virtual Machine Types

* Azure currently has three VM families:

A: High-Value D: Low-Latency, SSD

Type Cores RAM Type Cores RAM
A0 1 0.768
Al 1 1.75
A2 2 3.5
A3 4 7
A4 8 14
A5 2 14
High Memory A6 4 28
A7 8 56
Infiniband
Faster CPUs
........ 0L
SSD% MEMO'I’V"" ...

G: Extreme Performance, SSD
Type Cores RAM

G1 2 28
G2 4 56
G3 8 112
G4 16 224
G5 32 448

Virtual Machine Architecture

* Network, local and remote storage are .
. o FEMOTe 510rag 3% Microsoft
additional allocation dimensions

 Ephemeral storage: uses local storage
bandwidth and space

— Backed by local HDD or SSD
e Persistent storage: uses network

bandwidth
C:\ E:\, F:\, etc.
— Cached on local server RAM, HDD or SSD 0S Disk Data Disks

— Backed by Azure Storage page blobs T l
— “S” variants (e.g. “DS14”) can use SSD- ,
Local Disk Cach
backed Premium Storage o f' acne -

Availability Domains - FDs and UDs

* Fault domain: largest scope single-point of failure in a datacenter
— SPoFs: server, TOR, PDU => rack

 Update domain: group of servers that can be updated in parallel
— Periodic host software (e.g. hypervisor and OS) require reboots
— Some VMs may not wish to be rebooted concurrently

/

TOR TOR TOR \ TOR TOR

Servers

Fault Domain Racks

Availability Set - FD and UD Constraints

* Availability Sets group collections of VMs with related availability constraints
— Up to 3 FDs, up to 20 UDs M
— More FDs available for infrastructure

 Examples:

. . . Availability Set 2

— 3 VMs performing Paxos replication: 3 FDs FDs: 2
— 10 VMs serving web requests: 90% availability goal o
N oo B N o1 J§
Availability Set 1 i ! i]
FDs: 3 N v N N uo:
mmmmmnmnn P ———— o pmmmm—mmm- - ! uD4 ¢) UDo i
B uvoo IR uo: R uD2 : i ! |
i Lo P | A vo1 A un2
i FDO | | FD1 { ! FD2 | | P i
CHPRPRRUFRNEORS S Eut J SPU— up3 N uo4 N
. FDO | | FD1
(I [

Fabric Clusters

e Fabric Controller: Hardware and VM manager for a “cluster” of servers
— Uses 5-server Paxos-type replication for high availability
— Exposes API for deploying, deleting and updating VMs
— Keeps track of server and VM health

e Fabric Controller can autonomously “heal” a VM
— Detects server has failed and restarts VM on a healthy server

FC1 FC2 FCn

VM Allocator

 Composed of cluster-selection, admission-control, and intra-cluster allocation
algorithms

* Multi-level:
— First, select FC cluster
— Then, FC cluster allocator places VMs on servers

o e v .) Cluster & Service ™
Availability Set Availability Set —_— [Cluster-Selection [O e] DC
] . Azure
[Admission Control [Admission Control] [Admission Control] >_ A” .
ocation
e N 4 N 4 N :
Allocation & Allocation & Allocation & E ng| ne
Healing) L Healing) Healing _

N

Buffer

ALLOCATION BASICS

Allocation Scenarios

* Newly deployed services, service evictions,
* Scale-out of existing services

* Service healing after failures

* Optimizing for host OS updates

pre-emptions, ...

[

A:UDO

B:UDO B:UD1
A:UDO } [A:UD1
B:UDO B:UD1

Constraints

* Placement constraints

— Resource constraints: Sum of resources of all VMs on a node cannot exceed server resources
(CPU, memory, disk, SSD, network 10,...)
— Bin-Packing
— Failure domain constraint: VMs of the same tenant must be spread across many failure domains
— Co-location constraints: Certain types of VMs cannot be co-located together

Cores

Memory
«—>

Cores

VM1
I ‘/Disk

Buffers

Healing threshold

* Unit of allocation is a cluster (#empty nodes)

— If a node or rack fails, VMs must be healed to empty capacity within the cluster.

: : | laced within the cl Scale-out threshold
— |t a service wants to scale-out, extra VMs are placed within the cluster (Hempty nodes)
- We keep sufficient empty-resource buffers in each cluster (healing, scale-outs, turfi-space).

76%

Gen3-Threshold(50, 25)-Heavy Gen3-Threshold(70, 35)-Heavy

88% 10.0000% 88% 10.0000%

86% 86% M AverageCoreUtilization

84% 1.0000% 84% - |nstanceScaleOutFailureRate 1.0000%

0

c c - |nstanceHealingFailureRate
O 82%) O 82%)
o 0.1000% @© B 0.1000% ®©
N 80% e N 80% ez
= o ‘= g
D 78% S D 78% S
o 0.0100% = py 0.0100% =
fust o ©
o L o 76% L
o o

74%

72%

70%

0.0010% 74% 0.0010%
0.0001% 70% 0.0001%
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

ScaleOutPercentage ScaleOutPercentage

Simplified View of Cluster Buffers

Rack

Cluster

}

SR

TOR

TOR

TOR

Cluster

\

Healing Buffer

2
S -
(]

Scale-out/Growth Buffer

Scale-Out Threshold — —

New Deployment
Threshold

for healing

for scale-outs

= fOor new services

Simplified View of Cluster Buffers

When new deployment threshold
is reached, no new deployments
into this cluster.

Healing Buffer
—————————————— Scale-Out Threshold — —

————————————— New Deployment Threshold =

When scale-out threshold is
reached, existing tenants
cannot grow anymore.
Scale-Out Failures occur!

When healing buffer is
exhausted, node/rack failures
cannot be healed.

Healing Failures occur!

Healing Buffer
—————————————— Scale-Out Threshold = =

————————————— New Deployment Threshold =

Healing Buffer
—————————————— Scale-Out Threshold = =

————————————— New Deployment Threshold =

Fragmentation

* The actual utilization in a cluster is lower than New Deployment Threshold 77
* Fragmentation = spatial fragmentation + temporal fragmentation (church) \
 Amount of fragmentation depends on workload, cluster generation, policy O

settings, features, etc.

Healing Buffer

Scale-Out Threshold = —

New Deployment Threshold =

Fragmentation

pm—

Healing Buffer

Scale-Out Threshold = —

eployment Threshold =

Healing Buffer

Scale-Out Threshold = =

New Deployment Threshold =

Setting the Thresholds / Limits

Healing Buffer =5 Nodes
—————————————— Scale-Out Threshold — —

Scale-out/Growth Buffer = 5 Nodes
————————————— New Deployment Threshold -

Buffers Too Small

Healing Buffer = 20 Nodes

—————————————— Scale-Out Threshold — —
Scale-out/Growth Buffer = 15 Nodes
————————————— New Deployment Threshold -

Buffers Balanced

Healing Buffer = 20 Nodes

—————————————— Scale-Out Threshold — —
Scale-out/Growth Buffer = 50 Nodes

————————————— New Deployment Threshold -

Buffers Too Large

Scale-Out Failure Rate

o)

0.50% 0.42%

0.40%

0.30%

0.20%

0.10% 0.06% 0.04%

-] I
Too Small Balanced Too Large

Healing Failure Rate
2.50%

2.12%
2.00%
1.50%
1.00%
0.50%
0.01% 0.00%
0.00%
Too Small Balanced Too Large

Utilization

94%
92%
90%
88%
86%
84%
82%
80%

91.53%

87.29%

83.95%

Too Small Balanced Too Large

Utilization vs. Empty Nodes

Utilization: ~ 66%
Empty nodes: 0

Cannot heal 1/3 possible single-node failures

Cannot host one more full-size instance

§e

Utilization: ~ 66%
Empty nodes: 1

Can heal all possible one-node failures

Can host one more any possible instances

7 X N
—_—
" ——

Utilization vs. Empty Nodes

. Utilization: ~ 66%

Utilization numbers are not well correlated to whether
we can heal or scale-out in a cluster.

ilures

Limits should be expressed as “#empty nodes”
in a cluster — not utilization.

< 4

CITTPLY TTOUES. 1

Can heal all possible one-node failures

Can host one more any possible instances

r \ r— \
——
FJ [—

Optimizing

* The more tightly we can pack VMs,
... the less buffer we need.
... the less fragmentation we have.
... the easier for healing & scale-outs.

High utilization = Lower COGS
> Each 1% of utilization gain results
in millions of S savings.

-

* Allocation decision is in critical path of deployment. We want relatively simple
and very fast algorithms

* Algorithms must take decision based on little knowledge

— Algorithms are online = need to take decision for each VM immediately
— We do not know how long each VM will remain deployed before it leaves

 We want to avoid VM migrations as much as possible

* Algorithms should be adaptive to adjust to changes in workloads, hardware,
policies, constraints, platform characteristics, etc.

Resource Utilization

* VM Packing should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

VM Allocator should be aware of We use multi-dimensional best-fit.
Multiple Resource Dimensions: [Heuristics for Vector Bin Packing,
Panigrahy et al., MSR Tech Report 2011]

* Each resource dimension d is assigned a
weight w; =2 scarcity of the resource.

* 74 isthe residual resource of a node

* Allocate the VM to the node that
minimizes Y, wy * 14

Cores Cores

wasted
memory

Multi-Dimension Optimization

* VM Packing should achieve high utilization across all resource dimensions

1. Multi-dimensional resource packing

2. Take into account online nature of service allocation

VM Allocator should be aware of
online nature of allocation

Instances to allocate

VM a

Node 1 Node 2

— <

 Simple example: Assume every VM has
probability of %2 of leaving until time T.
* Probability that we can deploy VM, ?
* If new VM is placed on Node 1:

1* (1)’ 6
(5) *G) ~ 16
* If new VM is placed on Node 2:
1 1\ 9
(5)*(5) 16

- Placing new VM on Node 2 is better !

Azure Multi-Dimensional, Adaptive VM Packing

Azure allocation algorithm achieves
h- h | . ” d . Reduces resource waste
igher utilization across all resource dimensions __ by ~40% compared to

— Multi-dimensional resource packing simple baseline algorithms

— Take into account online nature of service allocation »

* Achieves near-optimal properties in terms of
healing & availability

* Allocation engine is adaptable

— Easy to evaluate impact of changes
(new service or VM types, hardware,
policy configuration, features, etc...)

* Adjusts to workload, hardware, etc...

MULTI-PRIORITY ALLOCATION

Multi-Priority Allocation

e So far, we assume all VMs are of equal priority
 What if we want to run workload of different priorities?

* For example, run low-priority VMs in unused resource slots (fill in

fragmentation) or in safety buffers. Evict these VMs if higher-priority VMs
arrive.

- “Multi-priority bin-packing problem”

* Objective: Pack as much as possible from highest-priority. Given that, pack
as much as possible from next highest-priority, etc...

[j High Priority

Multi-Priority Allocation — Metrics Low Priority
 Three metrics determine allocation decision for a new VM i Good p(i) Bad p(i)
C___J
1. Packing-Quality p(i): Same as in single-priority case. E
High packing-quality means a VM “fits” well. L
Good e(i) Bad e(i)
2. Eviction Cost e(i): Cost of evicting lower-priority VMs L
when deploying the VM to a node 0 @
3. Safety-Score s(i): We should deploy a low-priority VMM Good s(i) - Bad s(i)
VM i —

to a node on which the VM is likely going to “survive” for
a long time. Safety-score is high if the expected “survival-time” D
is high = less impact on future high-priority VM allocation. D

Next time a high-priority VM is allocated,
it will likely be placed on Node 2

0.82

0.81

0.8

0.79

0.78

0.77

0.76

0.75

0.74

C] High Priority
Multi-Priority Allocation — Trade-Offs Low priity

* The three metrics are often at odds with each other. Which node to place the new VM?

new instance:

| T\

- . . e ~ ~ ~\ If we minimize eviction cost,
CPU Utilization of nghest Prlorlty packing quahty decreases.
Workload with baseline algorithm
0.8087

Utilization loss due to

suboptimal packing when { }

always minimizing evictions

\& Z \& 7

0.7643 0.7640

. l [Packing-quality vs. eviction-cost trade-off }\6(

SinglePriority TwoPriority ThreePriority

D High Priority
Multi-Priority Allocation — Trade-Offs Low Priority

* The three metrics are often at odds with each other. Which node to place the new VM?

new instance:

Packing score is optimized for
S re) \ re) \ Nodes 1 or 2.
(o) (o)
~ Survival-time is best in Node 3.

- L l [\UUU,]

[Packing-quality vs. “survival-time” trade-off J\j
Q

Computing the Safety Score

We use statistical

1. Compute arrival rate of each VM type < information of workloads
(Data-driven)

2. For each nodev, and each VM type t:

. We use a clever algorithm
Compute safety-distance(v,t). that can compute these

- Expected time until some VM will be evicted due to values very quickly.
subsequent VM of type t, if new VM is deployed on node v.

danger-probability(v,t) = 1 / safety-distance(v,t).
3. For each nodev:

The approx. probability
that some VM will be

danger-probability(v) = 2, (danger-probability(v,t)) <+ evicted within the next

o time interval, if the new

Computing the Safety Score

Example 1: Algorithm is effective at capturing true safety of different nodes:

 Assume two VM types Large and Small (Arrival intervals: Large=3, Small=1)

«— Instanceto Deploy
. - danger-probability(v,t)

ﬂ H(small) 2 9 » 4 H(small) 1/2 1/5 1/9

|‘>i H(large) - - 3 ‘ H(large) 0 0 1/3
' — Sum 12 15 4)9

danger-probability(v) m

safety-distance(vt)

Computing the Safety Score

Example 2: Algorithm is effective at automatically adjusting to cluster state:

 Same example as before, except we add two additional empty nodes

«— Instance to Deploy

danger-probability(v,t)

: [H(small) 2 5 17 N l H(small) 1/2 1/5 1/17

H(large) - - 9 H(large) 0 0 1/9
I——» Sum 1/2 1/5 26/153
safety-distance(vt) The existence of additional
’ empty nodes has made

) 1F Safest node @
this node much more safe! danger-probability(v) has changed!

Computing the Safety Score

Example 3: Algorithm is aware of existing low-priority VMs:

 Same example as before, except one empty node now contains a low-priority VM

H
H

«— Instance to Deploy

danger-probability(v,t)

 H(smal) 2 5 ERN /| Hemal) 12 ys 113
r H(large) - - / 6 H(large) 0 0 1/6
The existence of low-priority VM ’_—. Sum 1/ ! 1/ > 19/ 48

safety-distance(v) in this node has made the
empty nodes less safe! danger-probability(y) ~ Safestnode __

Smaller “empty-node buffer” has changed!

Adaptivity of Safety Scores

» Safety scores automatically adapts to changes in Azure clusters
(due to workload changes, policy changes, hardware changes, etc...)

HP Util 75%; LP Util 14%;

3000

2500

2000

1500

1000

Safety Score

500 -

|
]
-5000 0 5000
-500

Low-utilization cluster.
Many empty nodes

...
10000

#Cores used

Total Util 89%

900
800
700
600
500
400
300
200
‘ 100

0
15000 20000 ~000 -100 ?

Safety Score

-200

~_

X-axis: All possible node-states, ordered
according to #cores used in this state.

HP Util 80%; LP Util 13%; Total Util 93%

ol e |}
i -

5000 10000 15000 20000
#Cores used \

High-utilization cluster.
Few empty nodes

Low-priority High-priority

utilization

Balancing the Metrics

utilization

Example: Balancing Packing-Awareness and Eviction Cost

1. Order nodes according to

packing scores

2. Pick top X% of nodes
3. From among these, pick nodes
with least eviction cost

High Priority Utiliz{

i
o,

082 0808663698 0.808663698 0.808663698 0.B0B664456 0.808445471 0.807960946
o8
o.78
076
0.74
072
0.7
o 0.1 0.2 o3 0.a 0.5
0.2
018

0.053821347

206518081

MNode O

Node 1

MNode 2 MNode 3

Top X% packing scores

L

Node 4 MNode 3

L L.

“.., BF packing score

.Qh > 4 Lower is better

— Eviction cost:
4 Lower is better

J

Minimum cost

Node 0

—

Best packi

7777777777

0.10593817

3333333333

Node 2

ng score

175830306

Node 4

. BF packing score

- Eviction cos t

Choice of parameter X is based

on workload and hardware characteristics.

(data-driven)

Putting it all together

* Highly-efficient, state-of-art Multi-Priority Resource Allocation in Azure

™~

* For each allocation and eviction, we have to balance We are not aware of any

— Cost of evicted instances = Eviction-Cost similar multi-priority

— Packing Quality ° Packing Score allocation work in academia

— Survival time of newly deployed instances = Safety-Score
* Algorithmis priority-rule based.
e OQOur algorithm generalizes to k priorities.

Eviction Cost-Awareness

Eviction Cost-Awareness Eviction Cost-Awareness Safety Awareness

Basic Multi-Dimensional Basic Multi-Dimensional Basic Multi-Dimensional Basic Multi-Dimensional
Best-Fit Packing Best-Fit Packing Best-Fit Packing Best-Fit Packing

Multi-Priority — Allocation Engine

* Multi-priority allocation algorithm significantly improves low-
priority utilization, without decreasing high-priority utilization.

HP Utilization LP Utilization

078 0.7669 0.7615 0.7669 Lo.7661) 0.7669 0.2

0.1731

0.76 — —— 0.18
0.74 0.16
0.72 0-14 0.1212
0.12 0.1070
0.7
0.1
0.68
0.08
0.66 0.06
0.64 0.04
0.62 0.02
0.0029
0.6 0 e
BF+BF LP-Aware+BF BF+HP-Aware LP-Aware+HP-Aware Oracle BF+BF LP-Aware+BF BF+HP-Aware LP-Aware+HP-Aware Oracle
\ Optimal algorithm
Baseline algorithm. Our algorithm. if we knew the

future.

Towards 100% Utilization — Azure Batch

e Service built on top of Multi-Priority Resource Allocation Fabric

* |dea: Run batch jobs in free resource slots of Azure Compute clusters
— Azure Batch manages low-priority Azure jobs

* Initial results: Batch jobs can be completed quickly in spite of evictions.

Azure Batch Azure Tenants

TN
[Fabric Controller]—»

-
E%s
.
==

—

T_;{i:!

T

Towards 100% Utilization — Azure Batch

* Transient Resource (TR) Computing: New computing paradigm.
— Schedule tasks on transient resources
— Good predictors for resource availability and task durations are crucial.
— Designing new state-of-art TR-scheduling algorithms

* Challenge: Available resource slots have vastly different “survival-times”
— Different VM sizes have different survival-times and deployment probabilities
— Different Azure Batch Jobs have different processing times

* Building Azure Fabric Resource " With Azure Multi-Priority Allocation Engines +
Prediction Engine for Azure Batch, we can run clusters at near
higher-level service - 100% utilization...

Hyper-Scale Creates Lots of Hard and
Ground-Breaking Problems!

marcusfo@microsoft.com

=" Microsoft

http://www.fontoura.com

mailto:mark.russinovich@microsoft.com
http://www.markrussinovich.com/

