
Azure’s VM Allocator Internals

Marcus Fontoura
Microsoft

Thomas Moscibroda, Yang Chen, et al.

Microsoft Research

Mark Russinovich, Jim Johnson, Nar Ganapathy,
Ashwin Kulkarni, et al.

Azure

Motivation

• What is Azure

• A bit of history

• Where we are going

 100+ datacenters
 Top 3 networks in the world

Operational

Announced/Not Operational

Central US
Iowa

West US
California

North Europe
Ireland

East US
Virginia

East US 2
Virginia

US Gov
Virginia

North Central US
Illinois

US Gov
Iowa

South Central US
Texas

Brazil South
Sao Paulo

West Europe
Netherlands

China North *
Beijing

China South *
Shanghai

Japan East
Saitama

Japan West
Osaka

India South
Chennai

East Asia
Hong Kong

SE Asia
Singapore

Australia South East
Victoria

Australia East
New South Wales* Operated by 21Vianet

India Central
Pune

Canada East
Quebec City

Canada Central
Toronto

India West
Mumbai

Azure Global Footprint

>1 Trillion
Messages delivered every

month with Event Hubs

~100,000
New Azure customer
subscriptions/month

20Million
SQL database hours

used every day

>7Trillion
Storage transactions

every month

60Billion
Hits to Websites run on
Azure Web App Service

425Million
Azure Active

Directory Users

57%
Of Fortune 500 Companies use

Microsoft Azure

>60Trillion
Storage objects

in Azure

Azure Scale

Resource utilization in Azure

• Each 1% of utilization gain results in millions of $ savings

Resource utilization in Azure

• Each 1% of utilization gain results in millions of $ savings

VM allocation algorithms are crucial for operating Azure
effectively!

AZURE INTERNALS

Virtual Machine Types

• Azure currently has three VM families:

Type Cores RAM
A0 1 0.768
A1 1 1.75
A2 2 3.5
A3 4 7

A4 8 14
A5 2 14

A6 4 28
A7 8 56
A8 8 56

A9 16 112
A10 8 56

A11 16 112

Type Cores RAM
D1 1 3.5
D2 2 7
D3 4 14
D4 8 28

D11 2 14
D12 4 28

D13 8 56
D14 16 112

Type Cores RAM
G1 2 28

G2 4 56
G3 8 112
G4 16 224

G5 32 448

A: High-Value D: Low-Latency, SSD G: Extreme Performance, SSD

Infiniband

VMVM VM VMVMVM

Cores

MemorySSD

Faster CPUs

High Memory

Virtual Machine Architecture

• Network, local and remote storage are
additional allocation dimensions

• Ephemeral storage: uses local storage
bandwidth and space

– Backed by local HDD or SSD

• Persistent storage: uses network
bandwidth

– Cached on local server RAM, HDD or SSD

– Backed by Azure Storage page blobs

– “S” variants (e.g. “DS14”) can use SSD-
backed Premium Storage

Virtual Machine

C:\
OS Disk

E:\, F:\, etc.
Data Disks

D:\
Ephemeral

Dynamic VHD

RAM Cache

Local Disk Cache Blobs

Blob

Availability Domains - FDs and UDs

• Fault domain: largest scope single-point of failure in a datacenter
– SPoFs: server, TOR, PDU => rack

• Update domain: group of servers that can be updated in parallel
– Periodic host software (e.g. hypervisor and OS) require reboots

– Some VMs may not wish to be rebooted concurrently

CLOS Network

TOR TOR TOR TOR TOR

Servers

RacksFault Domain

Availability Set - FD and UD Constraints

• Availability Sets group collections of VMs with related availability constraints
– Up to 3 FDs, up to 20 UDs M

– More FDs available for infrastructure

• Examples:
– 3 VMs performing Paxos replication: 3 FDs

– 10 VMs serving web requests: 90% availability goal

Availability Set 2
FDs: 2
UDs: 5

UD2

UD 1

UD4

UD3

UD3

UD0

UD0 UD1

UD2

UD 4

FD0 FD1

Availability Set 1
FDs: 3
UDs: 3

FD1FD0 FD2

UD0 UD1 UD2

Fabric Clusters

• Fabric Controller: Hardware and VM manager for a “cluster” of servers
– Uses 5-server Paxos-type replication for high availability
– Exposes API for deploying, deleting and updating VMs
– Keeps track of server and VM health

• Fabric Controller can autonomously “heal” a VM
– Detects server has failed and restarts VM on a healthy server

FC1 FC2 FCn

VM Allocator
• Composed of cluster-selection, admission-control, and intra-cluster allocation

algorithms

• Multi-level:
– First, select FC cluster

– Then, FC cluster allocator places VMs on servers

Availability Set DCCluster-Selection

Admission Control Admission Control Admission Control

Allocation &
Healing

Allocation &
Healing

Allocation &
Healing

Cluster & Service
Update Algorithms

Availability Set

Azure
Allocation
Engine

Buffer

ALLOCATION BASICS

Allocation Scenarios

• Newly deployed services, service evictions, pre-emptions, …

• Scale-out of existing services

• Service healing after failures

• Optimizing for host OS updates

A: UD 0 A: UD 1

B: UD 0 B: UD 1

A: UD 0 A: UD 1

B: UD 0 B: UD 1

Constraints

• Placement constraints
– Resource constraints: Sum of resources of all VMs on a node cannot exceed server resources

(CPU, memory, disk, SSD, network IO,…)
 Bin-Packing

– Failure domain constraint: VMs of the same tenant must be spread across many failure domains

– Co-location constraints: Certain types of VMs cannot be co-located together

Cores

Memory

Disk

VM1

VM2VM
3 Cores

Disk

Memory

VM1
VM2

VM
3

Buffers

• Unit of allocation is a cluster
– If a node or rack fails, VMs must be healed to empty capacity within the cluster.

– If a service wants to scale-out, extra VMs are placed within the cluster

We keep sufficient empty-resource buffers in each cluster (healing, scale-outs, turn-space).

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

0.1 0.2 0.3 0.4 0.5

Fa
ilu

re
 R

at
e

C
o

re
 U

ti
liz

at
io

n

ScaleOutPercentage

Gen3-Threshold(50, 25)-Heavy

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

0.1 0.2 0.3 0.4 0.5

Fa
ilu

re
 R

at
e

C
o

re
 U

ti
liz

at
io

n
ScaleOutPercentage

Gen3-Threshold(70, 35)-Heavy

AverageCoreUtilization

InstanceScaleOutFailureRate

InstanceHealingFailureRate

Scale-out threshold
(#empty nodes)

Healing threshold
(#empty nodes)

Simplified View of Cluster Buffers

TOR TOR TOR TOR

…

Rack

Cluster

…

Node

Cluster

Scale-out/Growth Buffer

Healing Buffer

New Deployment
Threshold

Scale-Out Threshold

for new services

for scale-outs

for healing

Simplified View of Cluster Buffers

When new deployment threshold
is reached, no new deployments
into this cluster.

When scale-out threshold is
reached, existing tenants
cannot grow anymore.
Scale-Out Failures occur!

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

When healing buffer is
exhausted, node/rack failures
cannot be healed.
Healing Failures occur!

Fragmentation

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer

Healing Buffer

New Deployment Threshold

Scale-Out Threshold

Fragmentation

• The actual utilization in a cluster is lower than New Deployment Threshold

• Fragmentation  spatial fragmentation + temporal fragmentation (church)

• Amount of fragmentation depends on workload, cluster generation, policy
settings, features, etc.

Setting the Thresholds / Limits

Scale-out/Growth Buffer = 5 Nodes

Healing Buffer = 5 Nodes

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer = 15 Nodes

Healing Buffer = 20 Nodes

New Deployment Threshold

Scale-Out Threshold

Scale-out/Growth Buffer = 50 Nodes

Healing Buffer = 20 Nodes

New Deployment Threshold

Scale-Out Threshold

Buffers Too Small Buffers Too LargeBuffers Balanced

0.42%

0.06% 0.04%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

Too Small Balanced Too Large

Scale-Out Failure Rate

2.12%

0.01% 0.00%
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Too Small Balanced Too Large

Healing Failure Rate

91.53%

87.29%

83.95%

80%

82%

84%

86%

88%

90%

92%

94%

Too Small Balanced Too Large

Utilization

Utilization vs. Empty Nodes

Utilization: ~ 66%
Empty nodes: 0

Utilization: ~ 66%
Empty nodes: 1

Cannot heal 1/3 possible single-node failures

Cannot host one more full-size instance

Can host one more any possible instances

Can heal all possible one-node failures

Utilization vs. Empty Nodes

Utilization: ~ 66%
Empty nodes: 0

Utilization: ~ 66%
Empty nodes: 1

Cannot heal 1/3 possible single-node failures

Cannot host one more full-size instance

Can host one more any possible instances

Can heal all possible one-node failures

Utilization numbers are not well correlated to whether
we can heal or scale-out in a cluster.

Limits should be expressed as “#empty nodes”
in a cluster – not utilization.

Optimizing

• The more tightly we can pack VMs,

… the less buffer we need.

… the less fragmentation we have.

… the easier for healing & scale-outs.

• Allocation decision is in critical path of deployment. We want relatively simple
and very fast algorithms

• Algorithms must take decision based on little knowledge
– Algorithms are online  need to take decision for each VM immediately

– We do not know how long each VM will remain deployed before it leaves

• We want to avoid VM migrations as much as possible

• Algorithms should be adaptive to adjust to changes in workloads, hardware,
policies, constraints, platform characteristics, etc.

High utilization  Lower COGS
Each 1% of utilization gain results
in millions of $ savings.

Resource Utilization

• VM Packing should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

wasted
memory

Cores

Memory

Low
Mem

Low
Mem

Cores

Memory

Low
Mem

High
Mem

Low
Mem

VM Allocator should be aware of
Multiple Resource Dimensions:

• We use multi-dimensional best-fit.
[Heuristics for Vector Bin Packing,
Panigrahy et al., MSR Tech Report 2011]

• Each resource dimension d is assigned a
weight 𝑤𝑑 scarcity of the resource.

• 𝑟𝑑 is the residual resource of a node
• Allocate the VM to the node that

minimizes σ𝑑𝑤𝑑 ∗ 𝑟𝑑

Multi-Dimension Optimization

• VM Packing should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

2. Take into account online nature of service allocation

VM a
VM
b

Instances to allocate

VM Allocator should be aware of
online nature of allocation

• Simple example: Assume every VM has
probability of ½ of leaving until time T.

• Probability that we can deploy VMb ?
• If new VM is placed on Node 1:

• If new VM is placed on Node 2:

 Placing new VM on Node 2 is better !
Node 1 Node 2

T

Azure Multi-Dimensional, Adaptive VM Packing

• Azure allocation algorithm achieves
higher utilization across all resource dimensions
– Multi-dimensional resource packing

– Take into account online nature of service allocation

• Achieves near-optimal properties in terms of
healing & availability

• Allocation engine is adaptable
– Easy to evaluate impact of changes

(new service or VM types, hardware,
policy configuration, features, etc…)

• Adjusts to workload, hardware, etc…

Reduces resource waste
by ~40% compared to
simple baseline algorithms

MULTI-PRIORITY ALLOCATION

Multi-Priority Allocation

• So far, we assume all VMs are of equal priority

• What if we want to run workload of different priorities?

• For example, run low-priority VMs in unused resource slots (fill in
fragmentation) or in safety buffers. Evict these VMs if higher-priority VMs
arrive.

 “Multi-priority bin-packing problem”

• Objective: Pack as much as possible from highest-priority. Given that, pack
as much as possible from next highest-priority, etc…

Multi-Priority Allocation – Metrics

• Three metrics determine allocation decision for a new VM i

1. Packing-Quality p(i): Same as in single-priority case.
High packing-quality means a VM “fits” well.

2. Eviction Cost e(i): Cost of evicting lower-priority VMs
when deploying the VM to a node

3. Safety-Score s(i): We should deploy a low-priority VM
to a node on which the VM is likely going to “survive” for
a long time. Safety-score is high if the expected “survival-time”
is high  less impact on future high-priority VM allocation.

VM i

Good p(i) Bad p(i)

VM i

Good e(i) Bad e(i)

VM i

Good s(i) Bad s(i)

Next time a high-priority VM is allocated,
it will likely be placed on Node 2

High Priority

Low Priority

Multi-Priority Allocation – Trade-Offs

• The three metrics are often at odds with each other. Which node to place the new VM?

High Priority

Low Priority

new instance:

Packing-quality vs. eviction-cost trade-off

If we minimize eviction cost,
packing quality decreases.

0.8087

0.7643 0.7640

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

SinglePriority TwoPriority ThreePriority

CPU Utilization of Highest Priority
Workload with baseline algorithm

Utilization loss due to
suboptimal packing when
always minimizing evictions

Multi-Priority Allocation – Trade-Offs

• The three metrics are often at odds with each other. Which node to place the new VM?

High Priority

Low Priority

new instance:

Packing-quality vs. “survival-time” trade-off

Packing score is optimized for
Nodes 1 or 2.

Survival-time is best in Node 3.

Computing the Safety Score

1. Compute arrival rate of each VM type

2. For each node v, and each VM type t:

Compute safety-distance(v,t).
 Expected time until some VM will be evicted due to

subsequent VM of type t, if new VM is deployed on node v.

danger-probability(v,t) = 1 / safety-distance(v,t).

3. For each node v:

danger-probability(v) = Σt (danger-probability(v,t))

Safety-score(v) = 1/danger-probability(v)

The approx. probability
that some VM will be
evicted within the next
time interval, if the new
VM is placed on Node v.

We use statistical
information of workloads
(Data-driven)

We use a clever algorithm
that can compute these
values very quickly.

Computing the Safety Score

Example 1: Algorithm is effective at capturing true safety of different nodes:

• Assume two VM types Large and Small (Arrival intervals: Large=3, Small=1)

Computing the Safety Score

Example 2: Algorithm is effective at automatically adjusting to cluster state:

• Same example as before, except we add two additional empty nodes

Safest node
has changed!

The existence of additional
empty nodes has made
this node much more safe!

Computing the Safety Score

Example 3: Algorithm is aware of existing low-priority VMs:

• Same example as before, except one empty node now contains a low-priority VM

Safest node
has changed!

The existence of low-priority VM
in this node has made the
empty nodes less safe!
Smaller “empty-node buffer”

Adaptivity of Safety Scores

• Safety scores automatically adapts to changes in Azure clusters
(due to workload changes, policy changes, hardware changes, etc…)

X-axis: All possible node-states, ordered
according to #cores used in this state.

Low-utilization cluster.
Many empty nodes

High-utilization cluster.
Few empty nodes

Balancing the Metrics

• Example: Balancing Packing-Awareness and Eviction Cost

1. Order nodes according to
packing scores

2. Pick top X% of nodes
3. From among these, pick nodes

with least eviction cost

Choice of parameter X is based
on workload and hardware characteristics.
(data-driven)

H
ig

h
-p

ri
o

ri
ty

u
ti

liz
at

io
n

Lo
w

-p
ri

o
ri

ty
u

ti
liz

at
io

n Higher X

Putting it all together

• Highly-efficient, state-of-art Multi-Priority Resource Allocation in Azure

• For each allocation and eviction, we have to balance

– Cost of evicted instances  Eviction-Cost

– Packing Quality  Packing Score

– Survival time of newly deployed instances  Safety-Score

• Algorithm is priority-rule based.

• Our algorithm generalizes to k priorities.

Basic Multi-Dimensional
Best-Fit Packing

Eviction Cost-Awareness Eviction Cost-Awareness

Packing Awareness Eviction Cost-Awareness

Packing Awareness

Safety Awareness

We are not aware of any
similar multi-priority
allocation work in academia

Basic Multi-Dimensional
Best-Fit Packing

Basic Multi-Dimensional
Best-Fit Packing

Basic Multi-Dimensional
Best-Fit Packing

Multi-Priority – Allocation Engine

• Multi-priority allocation algorithm significantly improves low-
priority utilization, without decreasing high-priority utilization.

0.7669 0.7615 0.7669 0.7661 0.7669

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

BF+BF LP-Aware+BF BF+HP-Aware LP-Aware+HP-Aware Oracle

HP Utilization

0.0029

0.1212
0.1070

0.1609
0.1731

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

BF+BF LP-Aware+BF BF+HP-Aware LP-Aware+HP-Aware Oracle

LP Utilization

Baseline algorithm. Our algorithm.
Optimal algorithm
if we knew the
future.

Towards 100% Utilization – Azure Batch

• Service built on top of Multi-Priority Resource Allocation Fabric

• Idea: Run batch jobs in free resource slots of Azure Compute clusters
 Azure Batch manages low-priority Azure jobs

• Initial results: Batch jobs can be completed quickly in spite of evictions.

Fabric Controller

Azure Batch Azure Tenants

Towards 100% Utilization – Azure Batch

• Transient Resource (TR) Computing: New computing paradigm.
– Schedule tasks on transient resources

– Good predictors for resource availability and task durations are crucial.

– Designing new state-of-art TR-scheduling algorithms

• Challenge: Available resource slots have vastly different “survival-times”
– Different VM sizes have different survival-times and deployment probabilities

– Different Azure Batch Jobs have different processing times

• Building Azure Fabric Resource
Prediction Engine for
higher-level service

With Azure Multi-Priority Allocation Engines +

Azure Batch, we can run clusters at near
100% utilization…

Hyper-Scale Creates Lots of Hard and
Ground-Breaking Problems!

marcusfo@microsoft.com

http://www.fontoura.com

mailto:mark.russinovich@microsoft.com
http://www.markrussinovich.com/

